Mathematical Analysis III Tutorial 9 (November 21)

The following were discussed in the tutorial this week:

- 1. Recall the definition of total boundedness and separability.
- 2. A metric space is totally bounded if and only if every sequence has a Cauchy subsequence. In particular, a metric space is compact if and only if it is complete and totally bounded.

Remark. In the tutorial, what I wanted to say is "for all k, $(x_n^n)_{n=k}^{\infty}$ is a subsequence of $(x_n^k)_{n=1}^{\infty}$ ".

- 3. If (X, d) is separable, then there are countably many open sets $(B_n)_{n \in \mathbb{N}}$ such that every open set $G \subset X$ is a union of some B_n 's.
- 4. (Lindelöf Theorem) Let (X, d) be a separable metric space and $(G_{\alpha})_{\alpha \in I}$ be a family of open sets. Then I has a countable subset \overline{I} such that

$$\bigcup_{\alpha \in I} G_{\alpha} = \bigcup_{\alpha \in \bar{I}} G_{\alpha}.$$

5. Let c_0 be the space of all sequences of real numbers that converge to zero, that is

$$c_0 := \{ (x_n)_{n=1}^{\infty} \in \ell^{\infty} : \lim_{n \to \infty} |x_n| = 0 \}.$$

Then c_0 is a separable subspace of $(\ell^{\infty}, \|\cdot\|_{\infty})$.