Mathematical Analysis III Tutorial 8 (November 14)

The following were discussed in the tutorial this week:

1. Let X be a complete metric space. Let $f: X \to X$ be a continuous map such that f^m is a contraction for some $m \ge 1$. Show that f has a unique fixed point x_0 and $f^n(x)$ converges to x_0 for any $x \in X$.

Remark. This is just question 6 in HW 6. We described an alternative method that is different from the suggested solution.

- 2. Let U be an open subset of \mathbb{R}^n and $g: U \to \mathbb{R}^n$ be a Lipschitz continuous map with Lipschitz constant α , $0 < \alpha < 1$. Let f = I + g, where I is the identity map. Show that
 - (a) f(U) is an open set;
 - (b) f has an inverse from f(U) to U.
- 3. Let $K \in C([0,1] \times [0,1])$ and $g \in C[0,1]$. Consider the integral equation

$$\varphi(x) = g(x) + \int_0^1 K(x, y)\varphi^2(y)dy, \ x \in [0, 1].$$

Show that the equation has a solution $\varphi \in C[0, 1]$ when g is sufficiently small in the sup-norm.