Mathematical Analysis III Tutorial 7 (November 7)

The following were discussed in the tutorial this week:

1. Consider the following two metrics d, ρ on \mathbb{R} given by

$$d(x,y) := |x-y|$$
 and $\rho(x,y) := |\tan^{-1} x - \tan^{-1} y|$

for any $x, y \in \mathbb{R}$. Show that

- (a) a sequence converges in (\mathbb{R}, d) if and only if it converges in (\mathbb{R}, ρ) ;
- (b) (\mathbb{R}, d) is complete while (\mathbb{R}, ρ) is not.
- 2. Recall the Contraction Mapping Principle.

Definition. Let (X, d) be a metric space. A map $T : (X, d) \to (X, d)$ is called a contraction if there is a constant $\gamma \in (0, 1)$ such that

$$d(T(x), T(y)) \le \gamma d(x, y), \text{ for all } x, y \in X.$$

Theorem. Let $T: X \to X$ be a contraction in a complete metric space (X, d). Then T has a unique fixed point x_0 . Moreover, for any $x \in X$, the sequence $\{T^n(x)\}_{n=1}^{\infty}$ converges to the fixed point x_0 .

3. Let (X, d) be a compact metric space. Let $f: X \to X$ be a map such that

$$d(f(x), f(y)) < d(x, y)$$
 for all $x \neq y$.

Show that f has a unique fixed point. (Compare it with the Contraction Mapping Principle. Do we have the same conclusion if we just assume that X is a complete metric space?)

(**Hint:** Consider F(x) := d(x, f(x)).)

4. Let $X = [-\pi, \pi], f(x) = \cos x$. Show that f satisfies

$$d(f(x), f(y)) < d(x, y)$$
 for all $x \neq y$

but it is not a contraction.