Mathematical Analysis III Tutorial 4 (October 17)

The following were discussed in the tutorial this week:

Let (X, d) be a metric space. $E \subset X$.

- 1. Recall the notions of boundary, closure and interior of sets in a metric space.
- 2. We prove the following properties of interior as stated in the lecture notes:
 - (i) E° is open.
 - (ii) $E^{\circ} = E \setminus \partial E$.
 - (iii) $E^{\circ} = X \setminus (\overline{X \setminus E}).$
 - (iv) $E^{\circ} = \bigcup \{ G : G \text{ is an open set }, G \subset E \}.$
- 3. Let $A, B \subset X$. Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. Is it true that $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$? How about infinite intersection?
- 4. Suppose $E \neq \emptyset$, recall that $\rho_E : X \to \mathbb{R}$ is a continuous function defined by

$$\rho_E(x) = \inf_{y \in E} d(x, y) \text{ for } x \in X.$$

Show that

- (a) if $E \neq \emptyset$, then $\overline{E} = \{x \in X : \rho_E(x) = 0\};$
- (b) if $E \neq X$, then $E^{\circ} = \{x \in X : \rho_{X \setminus E}(x) > 0\}$.
- 5. Write

$$B_r(x) := \{ y \in X : d(x,y) < r \}$$
 and $C_r(x) := \{ y \in X : d(x,y) \le r \}$

Show that $\overline{B_r(x)} \subset C_r(x)$ for any $x \in X$, r > 0. Is it true that $\overline{B_r(x)} = C_r(x)$? What if the metric space (X, d) is replaced by a normed vector space $(X, \|\cdot\|)$?

6. Show that

$$F := \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ and } x^2 \le y \le x\}$$

is closed in \mathbb{R}^2 . (Hint: Consider the continuous functions f(x, y) = x, $g(x, y) = y - x^2$, h(x, y) = x - y.)