Mathematical Analysis III
 Tutorial 3 (October 3)

The following were discussed in the tutorial this week:

1. (Question 2 in HW 2) Let f be a 2π-periodic function integrable on $[-\pi, \pi]$ such that $\int_{-\pi}^{\pi} f=0$. Define F by

$$
F(x)=\int_{0}^{x} f(y) d y
$$

Then F is a 2π-periodic continuous function.
(a) We show that $c_{n}(F)=\frac{1}{i n} c_{n}(f)$ for all $n \neq 0$ via approximating integrable functions by continuous functions (under integral).
(b) Suppose further that f satisfies a Lipschitz condition. We show that $c_{0}(F)=$ $\sum_{n=1}^{\infty} b_{n}(f) / n$.
2. Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C}. Write $\|f\|_{2}:=\sqrt{\langle f, f\rangle}$. Suppose $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is a sequence of orthonormal set in X, that is

$$
\left\langle\phi_{n}, \phi_{m}\right\rangle= \begin{cases}1 & \text { if } n=m \\ 0 & \text { otherwise }\end{cases}
$$

For any $f \in X$, define

$$
S_{N}(f)=\sum_{n=1}^{N}\left\langle f, \phi_{n}\right\rangle \phi_{n} \quad \text { for } N \in \mathbb{N}
$$

Then the following are true:
(a) (Bessel's inequality)

$$
\sum_{n=1}^{\infty}\left|\left\langle f, \phi_{n}\right\rangle\right|^{2} \leq\|f\|_{2}^{2}
$$

(b) (Best approximation)

$$
\left\|f-S_{N}(f)\right\|_{2} \leq\|f-g\|_{2}
$$

for any $g \in \operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$, for all $N \in \mathbb{N}$. Moreover, equality holds if and only if $g=S_{N}(f)$.
(c) (Orthonormal basis)

$$
\lim _{N \rightarrow \infty}\left\|f-S_{N}(f)\right\|_{2}=0
$$

if and only if the Parseval's identity holds:

$$
\sum_{n=1}^{\infty}\left|\left\langle f, \phi_{n}\right\rangle\right|^{2}=\|f\|_{2}^{2}
$$

In either cases, $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is called an orthonormal basis in X.
3. Consider the space $\mathcal{R}[-\pi, \pi]$ with the "inner product"

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

Then we know that $\Phi:=\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}\right\}_{n=-\infty}^{\infty}$ is an orthonormal basis. Thus the results in 2 hold, and the Parseval's identity takes the form

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}(f)\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

4. Similarly one can consider the space $\mathcal{R}[-1,1]$ with the "inner product"

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \overline{g(x)} d x
$$

Applying Gram-Schmidt process to the sequence of monomials $\left\{x^{n}\right\}_{n=0}^{\infty}$, we obtain an orthonormal set $\left\{\sqrt{\frac{2 n+1}{2}} P_{n}\right\}_{n=0}^{\infty}$, where each P_{n} is a polynomial of degree n. The polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ are called Legendre polynomials. They have a closed form

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left[\left(x^{2}-1\right)^{n}\right]}{d x^{n}}
$$

and satisfy the differential equations

$$
\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right]^{\prime}+n(n+1) P_{n}(x)=0 \text { for } n \geq 0
$$

Moreover one can show that $\left\{\sqrt{\frac{2 n+1}{2}} P_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis, using Weierstrass Approximation Theorem. The Parseval's identity takes the form

$$
\sum_{n=0}^{\infty} \frac{2 n+1}{2}\left|\left\langle f, P_{n}\right\rangle\right|^{2}=\int_{-1}^{1}|f(x)|^{2} d x
$$

(This formula is written wrongly in the tutorial.)
Ex 1 Let f be a 2π-periodic function which is differentiable on $[-\pi, \pi]$ with f^{\prime} integrable on $[-\pi, \pi]$. Show that

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty
$$

Ex 2 (Trigonometric series that is not a Fourier series.) Show that the trigonometric series

$$
\sum_{n \geq 2} \frac{1}{\log n} \sin n x
$$

converges for every x, yet it is not the Fourier series of a 2π-periodic function integrable on $[-\pi, \pi]$.

