Solution 9

1. Let Ω be a bounded, convex set in \mathbb{R}^{n}. Show that a family of equicontinuous functions is bounded in $C(\Omega)$ if there exists a point $x_{0} \in \Omega$ and a constant $M>0$ such that $\left|f\left(x_{0}\right)\right| \leq M$ for all f in the family.
Solution. By equicontinuity, for $\varepsilon=1$, there is some δ_{0} such that $|f(x)-f(y)| \leq 1$ whenever $|x-y| \leq \delta_{0}$. Let $B_{R}\left(x_{0}\right)$ a ball containing E. Then $\left|x-x_{0}\right| \leq R$ for all $x \in E$. We can find $x_{0}, \cdots, x_{n}=x$ where $n \delta_{0} \leq R \leq(n+1) \delta_{0}$ so that $\left|x_{n+1}-x_{n}\right| \leq \delta_{0}$. It follows that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq \sum_{j=0}^{n-1} \left\lvert\, f\left(x_{j+1}-f\left(x_{j}\right) \left\lvert\, \leq n \leq \frac{R}{\delta_{0}}\right.\right.\right.
$$

Therefore,

$$
|f(x)| \leq\left|f\left(x_{0}\right)\right|+n+1 \leq M+\frac{R}{\delta_{0}} \quad \forall x \in \Omega, \forall f \in \mathcal{F}
$$

2. Let $\left\{f_{n}\right\}$ be a sequence in $C(\Omega)$ where Ω is open in \mathbb{R}^{n}. Suppose that on every compact subset of Ω, it is equicontinuous and bounded. Show that there is a subsequence $\left\{f_{n_{j}}\right\}$ converging to some $f \in C(\Omega)$ uniformly on each compact subset of Ω.
(Hint: Show that $\Omega=\cup_{i=1}^{\infty} K_{i}$, where K_{j} are compact subsets of Ω and $K_{i} \subset K_{i+1}$, for all i.)

Solution. Let K_{j} be an ascending family of compact sets in Ω satisfying $\Omega=\bigcup_{j} K_{j}$. You may take $K_{j}=\overline{B_{j}(0)} \bigcap\{x \in \Omega: d(x, \partial \Omega) \geq 1 / j\}$. Applying A-A theorem to $\left\{f_{n}\right\}$ on each K_{n} step by step and then take a Cantor's diagonal sequence.
3. Let $K \in C([a, b] \times[a, b])$ and $f_{n}, f \in C[a, b]$, define $T f$ by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

(a) Show that T maps $C[a, b]$ to itself.
(b) Show that if $\left\{f_{n}\right\}$ is a bounded sequence in $C[a, b]$, then $\left\{T f_{n}\right\}$ contains a convergent subsequence.

Solution.

(a) Since $K \in C([a, b] \times[a, b])$, given $\varepsilon>0$, there exists $\delta>0$ such that $\mid K(x, y)-$ $K\left(x^{\prime}, y\right) \mid<\varepsilon$, whenever $\left|x-x^{\prime}\right|<\delta$. Then for $x, x^{\prime} \in[a, b],\left|x-x^{\prime}\right|<\delta$, one has

$$
\left|(T f)(x)-(T f)\left(x^{\prime}\right)\right| \leq \int_{a}^{b}\left|K(x, y)-K\left(x^{\prime}, y\right)\left\|f (y) \left|d y \leq|a-b|\|f\|_{\infty} \varepsilon\right.\right.\right.
$$

Hence $T f \in C[a, b]$.
(b) Suppose $\sup _{n}\left\|f_{n}\right\|_{\infty} \leq M<\infty$. It follows from the proof of (a) that δ can be taken independent of n. Hence $\left\{f_{n}\right\}$ is equicontinuous. Furthermore, since $\left|\left(T f_{n}\right)(x)\right| \leq$ $\int_{a}^{b}\left|K(x, y)\left\|f_{n}(y) \mid d y \leq M(b-a)\right\| K \|_{\infty},\left\{f_{n}\right\}\right.$ is uniformly bounded. Then it follows from Arzela-Ascoli theorem that $\left\{T f_{n}\right\}$ contains a convergent subsequence.
4. Show that the boundary of a nonempty open set in a metric space must be closed and nowhere dense. Conversely, every closed, nowhere dense set is the boundary of some open set.

Solution. Let U be a nonempty open set and let Γ be its boundary. Then $U \cap \Gamma=\emptyset$, since every point of U is an interior point. Γ is closed since the boundary of a set is always a closed set. Let $x \in \Gamma$. Since x is a boundary point, any metric ball containing x must contain some points in U. It follows that Γ is nowhere dense. Conversely, Let Γ be a closed and nowhere dense set. Let U be the complement of Γ. Then U is open. Let $x \in \Gamma$. Since Γ is nowhere dense, any metric ball containing x must contain some points in U. Hence $\Gamma \subset \partial U$. Since every point of U is an interior point, $\Gamma=\partial U$.
5. Use Baire category theorem to show that transcendental numbers are dense in the set of real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer coefficients and it is transcendental otherwise. Let \mathcal{A} be all algebraic numbers and \mathcal{T} be all transcendental numbers so that $\mathbb{R}=\mathcal{A} \cup \mathcal{T}$. From MATH2050 or even earlier we know that \mathcal{A} is a countable set $\left\{a_{j}\right\}$. Thus let $\mathcal{A}_{n}=\left\{a_{1}, \cdots, a_{n}\right\}$ and we have $\mathcal{T}=\cap_{n} \mathbb{R} \backslash \mathcal{A}_{n}$. As each $\mathbb{R} \backslash \mathcal{A}_{n}$ is a dense, open set, \mathcal{T} is a set of second category and therefore dense.

In case you don't want to use the countability of algebraic numbers, you may let
$\mathcal{P}_{n}=\{$ integer polynomials of degree not exceeding n and of coefficients in $\{-n, \ldots, n\}\}$
and

$$
\mathcal{B}_{n}=\left\{x: x \text { is a root of some polynomials in } \mathcal{P}_{n}\right\} .
$$

Then show that each \mathcal{B}_{n} is closed and nowhere dense. Therefore, $\mathcal{A}=\cup_{n} \mathcal{B}_{n}$ is of first category. \mathcal{B}_{n} is closed since \mathcal{P}_{n}, and hence \mathcal{B}_{n}, is finite. To show nowhere dense of \mathcal{B}_{n}, you may assume the existence of at least one transcendental number α, say. Then for every algebraic number a, show that $a+n^{-1} \alpha$ is a transcendental number so you can always find a transcendental number no matter how close to a.
A final remark is, while it is easy to show transcendental numbers are dense, here we show that it is of second category, a bit more information.

