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Solution 9

1. Let Ω be a bounded, convex set in Rn. Show that a family of equicontinuous functions
is bounded in C(Ω) if there exists a point x0 ∈ Ω and a constant M > 0 such that
|f(x0)| ≤M for all f in the family.

Solution. By equicontinuity, for ε = 1, there is some δ0 such that |f(x) − f(y)| ≤ 1
whenever |x− y| ≤ δ0. Let BR(x0) a ball containing E. Then |x− x0| ≤ R for all x ∈ E.
We can find x0, · · · , xn = x where nδ0 ≤ R ≤ (n+ 1)δ0 so that |xn+1−xn| ≤ δ0. It follows
that

|f(x)− f(x0)| ≤
n−1∑
j=0

|f(xj+1 − f(xj)| ≤ n ≤
R

δ0
.

Therefore,

|f(x)| ≤ |f(x0)|+ n+ 1 ≤M +
R

δ0
∀x ∈ Ω, ∀f ∈ F .

2. Let {fn} be a sequence in C(Ω) where Ω is open in Rn. Suppose that on every compact
subset of Ω, it is equicontinuous and bounded. Show that there is a subsequence {fnj}
converging to some f ∈ C(Ω) uniformly on each compact subset of Ω.
(Hint: Show that Ω = ∪∞i=1Ki, where Kj are compact subsets of Ω and Ki ⊂ Ki+1, for all
i.)

Solution. Let Kj be an ascending family of compact sets in Ω satisfying Ω =
⋃

j Kj .

You may take Kj = Bj(0)
⋂
{x ∈ Ω : d(x, ∂Ω) ≥ 1/j}. Applying A-A theorem to {fn} on

each Kn step by step and then take a Cantor’s diagonal sequence.

3. Let K ∈ C([a, b]× [a, b]) and fn,f ∈ C[a, b] ,define Tf by

(Tf)(x) =

∫ b

a
K(x, y)f(y)dy.

(a) Show that T maps C[a, b] to itself.

(b) Show that if {fn} is a bounded sequence in C[a, b], then {Tfn} contains a convergent
subsequence.

Solution.

(a) Since K ∈ C([a, b] × [a, b]), given ε > 0, there exists δ > 0 such that |K(x, y) −
K(x′, y)| < ε, whenever |x− x′| < δ. Then for x, x′ ∈ [a, b], |x− x′| < δ, one has

|(Tf)(x)− (Tf)(x′)| ≤
∫ b

a
|K(x, y)−K(x′, y)||f(y)|dy ≤ |a− b|‖f‖∞ε.

Hence Tf ∈ C[a, b].

(b) Suppose supn ‖fn‖∞ ≤M <∞. It follows from the proof of (a) that δ can be taken
independent of n. Hence {fn} is equicontinuous. Furthermore, since |(Tfn)(x)| ≤∫ b
a |K(x, y)||fn(y)|dy ≤ M(b − a)‖K‖∞, {fn} is uniformly bounded. Then it follows

from Arzela-Ascoli theorem that {Tfn} contains a convergent subsequence.

4. Show that the boundary of a nonempty open set in a metric space must be closed and
nowhere dense. Conversely, every closed, nowhere dense set is the boundary of some open
set.
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Solution. Let U be a nonempty open set and let Γ be its boundary. Then U ∩ Γ = ∅,
since every point of U is an interior point. Γ is closed since the boundary of a set is always
a closed set. Let x ∈ Γ. Since x is a boundary point, any metric ball containing x must
contain some points in U . It follows that Γ is nowhere dense. Conversely, Let Γ be a closed
and nowhere dense set. Let U be the complement of Γ. Then U is open. Let x ∈ Γ. Since
Γ is nowhere dense, any metric ball containing x must contain some points in U . Hence
Γ ⊂ ∂U . Since every point of U is an interior point, Γ = ∂U .

5. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and T be
all transcendental numbers so that R = A∪T . From MATH2050 or even earlier we know
that A is a countable set {aj}. Thus let An = {a1, · · · , an} and we have T = ∩nR \ An.
As each R \ An is a dense, open set, T is a set of second category and therefore dense.

In case you don’t want to use the countability of algebraic numbers, you may let

Pn = { integer polynomials of degree not exceeding n and of coefficients in {−n, . . . , n}}

and
Bn = {x : x is a root of some polynomials in Pn}.

Then show that each Bn is closed and nowhere dense. Therefore, A = ∪nBn is of first
category. Bn is closed since Pn, and hence Bn, is finite. To show nowhere dense of Bn, you
may assume the existence of at least one transcendental number α, say. Then for every
algebraic number a, show that a + n−1α is a transcendental number so you can always
find a transcendental number no matter how close to a.

A final remark is, while it is easy to show transcendental numbers are dense, here we show
that it is of second category, a bit more information.


