## Solution 8

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $C^{2}$ and $f\left(x_{0}\right)=0, f^{\prime}\left(x_{0}\right) \neq 0$. Show that there exists $\rho>0$ such that

$$
T x=x-\frac{f(x)}{f^{\prime}(x)}, \quad x \in\left(x_{0}-\rho, x_{0}+\rho\right)
$$

is a contraction. (This is the Newton's method.)
Solution. By direct computation, $T^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}$. Since $f$ is $C^{2}$ and $f\left(x_{0}\right)=$ $0, f^{\prime}\left(x_{0}\right) \neq 0$, it follows that $T$ is $C^{1}$ in a neighbourhood of $x_{0}$ with $T\left(x_{0}\right)=x_{0}, T^{\prime}\left(x_{0}\right)=0$ and hence there exists $\rho>0, \gamma \in(0,1)$ such that

$$
\left|T^{\prime}(x)\right| \leq \gamma<1, \quad \text { for any } x \in\left[x_{0}-\rho, x_{0}+\rho\right]
$$

Now mean value theorem implies that

$$
|T(x)-T(y)| \leq \gamma|x-y|, \quad \text { for all } x, y \in\left[x_{0}-\rho, x_{0}+\rho\right]
$$

In particular, taking $y=x_{0}$, we have

$$
\left|T(x)-x_{0}\right|=\left|T(x)-T\left(x_{0}\right)\right|<\left|x-x_{0}\right| \leq \rho, \quad \text { for any } x \in\left[x_{0}-\rho, x_{0}+\rho\right] .
$$

Hence $T$ is a contraction on $\left[x_{0}-\rho, x_{0}+\rho\right]$.
2. Let $g: U \rightarrow \mathbb{R}^{n}$ be a Lipschitz continuous map on an open set $U \subset \mathbb{R}^{n}$ with Lipschitz constant $\alpha$ satisfying $0<\alpha<1$. Let $f=I+g$, where $I$ is the identity on $\mathbb{R}^{n}$.

Show that
(a) $f(U)$ is an open set
(b) $f$ has an inverse from $f(U)$ to $U$.

## Solution.

(a) Setting as in the hint, let $B_{\delta}\left(x_{0}\right) \subset U$. We claim that there is some $\rho$ so that $T$ maps $\overline{B_{\delta}(0)}$ to itself for all $y \in B_{\rho}(0)$. For, $T x=x-(\widetilde{f}(x)-y)=y+g\left(x_{0}\right)-g\left(x+x_{0}\right)$, and we have

$$
|T x| \leq|y|+\left|g\left(x_{0}\right)-g\left(x+x_{0}\right)\right| \leq \rho+\alpha|x| \leq \delta,
$$

provided we choose $\rho \leq(1-\alpha) \delta$. So $T$ is a continuous map from $\overline{B_{\delta}(0)}$ to itself. Next, we have $|T x-T z|=\left|g\left(x+x_{0}\right)-g\left(z+x_{0}\right)\right| \leq \alpha|x-z|$, so $T$ is a contraction. Since $\overline{B_{\delta}(0)}$ is a closed set in the complete space $\mathbb{R}^{n}$, it is also complete. By Banach Fixed Point Theorem we obtain a fixed point $x^{*}$ for $T$. From $T x^{*}=x^{*}$, we get $f\left(x^{*}+x_{0}\right)=\widetilde{f}\left(x^{*}\right)+f\left(x_{0}\right)=y+y_{0}$, that is, for every $y_{1} \in B_{\rho}\left(y_{0}\right)$, there is a unique point $x_{1} \equiv x^{*}+x_{0}$ in $B_{\delta}\left(x_{0}\right)$ satisfies $f\left(x_{1}\right)=y_{1}$. We have shown that $f(U)$ is open.
(b) Let $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $x_{1}+g\left(x_{1}\right)=x_{2}+g\left(x_{2}\right)$ implies

$$
\left|x_{1}-x_{2}\right|=\left|g\left(x_{2}\right)-g\left(x_{1}\right)\right| \leq \alpha\left|x_{2}-x_{1}\right|,
$$

which forces $x_{1}-x_{2}=0$. Hence $f$ is injective from $U$ onto $f(U)$.
3. Let $A=\left(a_{j}^{i}\right)_{n \times n}$ be an $n \times n$-matrix with $\|A\|=\sqrt{\sum_{i, j}\left(a_{j}^{i}\right)^{2}}<1$

Show that, for all $b \in \mathbb{R}^{n}$,

$$
(I-A) x=b
$$

admits a unique solution.
Solution. We define $T x=x-(I-A) x-b$ on $\mathbb{R}^{n}$. By Lemma 2.1, $\left\|T x_{2}-T x_{1}\right\|_{2}=$ $\left\|A\left(x_{2}-x_{1}\right)\right\|_{2} \leq\|A\|\left\|x_{2}-x_{1}\right\|_{2}$, where $\|A\|=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2}$. By our assumption $\|A\|<1$, so $T$ is a contraction on $\mathbb{R}^{n}$. By the contraction mapping principle, it has a unique fixed point. In other words, the matrix $I-A$ is invertible.
4. Consider the function

$$
f(x)=\frac{1}{2} x+x^{2} \sin \frac{1}{x}, \quad x \neq 0
$$

and set $f(0)=0$. Show that $f$ is differentiable at $x=0$ with $f^{\prime}(0)=\frac{1}{2}$ but it has no local inverse at 0 . Does it contradict the inverse function theorem?
Solution. $|f(x)-f(0)-(1 / 2) x|=\left|x^{2} \sin (1 / x)\right|=O\left(x^{2}\right)$, hence $f$ is differentiable at 0 with $f^{\prime}(0)=1 / 2$. Let $x_{k}=1 / 2 k \pi, y_{k}=1 /(2 k \pi+1)$, then $f^{\prime}\left(x_{k}\right)=-1 / 2, f^{\prime}\left(y_{k}\right)=3 / 2$. Then it is clear that $f$ is not injective in $I_{k}=\left(y_{k}, x_{k}\right)$. Since any neighborhood of 0 must include contain some $I_{k}$, this shows that $f$ it has no local inverse at 0 . It does not contradict the inverse function theorem because $f^{\prime}(x)$ is not continuous at 0 .

