Solution 6

1. Show that an orthonormal set $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ in $C[a, b]$ under L^{2}-producthas no convergent subsequence in the L^{2}-metric.
Solution. Since $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ be an orthonormal set, one has

$$
\int_{a}^{b}\left|\varphi_{k}-\varphi_{j}\right|^{2} d x=\int_{a}^{b}\left|\varphi_{k}\right|^{2}+\left|\varphi_{j}\right|^{2}-2 \varphi_{k} \varphi_{j} d x=2
$$

for any $k \neq j$. Hence it does not have any converging subsequence in L^{2}-distance.
Some of you may use the fact that $f=\sum_{j=1}^{\infty}<f, \varphi_{j}>_{2} \varphi_{j}$. No, we can't do this. It is true for the trigonometric series in L^{2}-sense but not true for all orthonormal sets.
2. Using open cover description, show that every continuous mapping of a compact set in some metric space (X, d) to another metric space (Y, ρ) is uniformly continuous.
Solution. By continuity, for each x and $\varepsilon>0$, there is some $\delta_{x}>0$ such that

$$
\rho(f(y), f(x))<\varepsilon / 2, \quad \forall y \text { with } d(y, x)<2 \delta_{x}
$$

The ball $B_{\delta_{x}}(x)$ forms an open cover of X. By the compactness of X there is a subcover $B_{\delta_{x_{k}}}\left(x_{k}\right), k=1, \cdots, N$. Let $\delta=\min \left\{\delta_{x_{1}}, \cdots, \delta_{x_{N}}\right\}$. For x, y satisfying $d(x, y)<\delta$, we first find $B_{\delta_{x_{k}}}\left(x_{k}\right)$ to contain x, then $d\left(x, x_{k}\right)<\delta_{x_{k}}$ and

$$
d\left(y, x_{k}\right) \leq d(y, x)+d\left(x, x_{k}\right)<\delta+\delta_{x_{k}} \leq 2 \delta_{x_{k}}
$$

It follows that

$$
\rho(f(y), f(x)) \leq \rho\left(f(y), f\left(x_{k}\right)\right)+\rho\left(f\left(x_{k}\right), f(x)\right) \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
$$

3. Show that every continuous function from a compact metric space (X, d) to \mathbb{R} attains its minimum and maximum.

Solution. Let F be a continuous function from (X, d) to \mathbb{R}. By Problem 5, the image $F(X)$ is a compact set. Hence the number $m=\inf _{x \in X} F(x)$ is finite. Let $\left\{x_{n}\right\} \in X$ be a sequence such that $F\left(x_{n}\right) \rightarrow m$. Since X is compact, there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x \in X$. One has $F(x)=\lim _{k \rightarrow \infty} F\left(x_{n_{k}}\right)=m$, due to the continuity of F. By the same arguments, F also attains its maximum.
4. Let (X, d) be a metric space and $C_{b}(X)$ the vector space of all bounded, continuous functions in X. Show that $\left(C_{b}\left(X, d_{\infty}\right)\right.$ forms a complete metric space,
where $d_{\infty}(f, g)=\sup |f-g|$.
Solution. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C_{b}(X)$. For $\varepsilon>0$, there exists n_{1} such that for any $m, n \geq n_{1}$, we have

$$
\begin{equation*}
\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon, \quad \forall x \in X \tag{1}
\end{equation*}
$$

It shows that $\left\{f_{n}(x)\right\}$ is a numerical Cauchy sequence, so $\lim _{n \rightarrow \infty} f_{n}(x)$ exists. We define $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. We check it is continuous at x_{0} as follows. By passing $m \rightarrow \infty$ in (1), we have
$\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n_{1}}(x)\right|+\left|f_{n_{1}}(x)-f_{n_{1}}\left(x_{0}\right)\right|+\left|f_{n_{1}}\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq 2 \varepsilon+\left|f_{n_{1}}(x)-f_{n_{1}}\left(x_{0}\right)\right|$.
As $f_{n_{1}}$ is continuous, there is some δ such that $\left|f_{n_{1}}(x)-f_{n_{1}}\left(x_{0}\right)\right|<\varepsilon$ for $x \in B_{\delta}\left(x_{0}\right)$. It follows that we $\left|f(x)-f\left(x_{0}\right)\right|<3 \varepsilon$ for $x \in B_{\delta}\left(x_{0}\right)$, so f is continuous at x_{0}. Now, letting $m \rightarrow \infty$ in (1), we get $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$ for all $n \geq n_{1}$, so $f_{n} \rightarrow f$ uniformly. In particular, it means f is bounded.
5. Let (X, d) be a metric space and $p \in X$ is a fixed point. Define for each $x \in X$, the function $f_{x}: X \rightarrow \mathbb{R}$ by

$$
f_{x}(y)=d(y, x)-d(y, p)
$$

(a) Show that $f_{x} \in C_{b}(X)$, where $C_{b}(X)$ as in question 4 .
(b) Show that the mapping $\Phi:(X, d) \rightarrow\left(C_{b}(X), d_{\infty}\right)$ defined by $\Phi(x)=f_{x} \in C_{b}(X)$ is an isometric embedding.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From $\left|f_{x}(z)\right|=|d(z, x)-d(z, p)| \leq d(x, p)$, and from $\left|f_{x}(z)-f_{x}\left(z^{\prime}\right)\right| \leq \mid d(z, x)-$ $d\left(z^{\prime}, x\right)\left|+\left|d\left(z^{\prime}, p\right)-d(z, p)\right| \leq 2 d\left(z, z^{\prime}\right)\right.$, it follows that each f_{x} is a bounded, uniformly continuous function in X.
(b) $\left|f_{x}(z)-f_{y}(z)\right|=|d(z, x)-d(z, y)| \leq d(x, y)$, and equality holds taking $z=x$. Hence

$$
\left\|f_{x}-f_{y}\right\|_{\infty}=d(x, y), \quad \forall x, y \in X
$$

6. Let T be a continuous self map on a complete metric space (X, d). Suppose that for some $k \geq 1, T^{k}$ is a contraction. Show that T admits a unique fixed point.
Solution. Since T^{k} is a contraction, there is a unique fixed point $x \in X$ such that $T^{k} x=x$. Then $T^{k+1} x=T^{k} T x=T x$ shows that $T x$ is also a fixed point of T^{k}. From the uniqueness of fixed point we conclude $T x=x$, that is, x is a fixed point for T. Uniqueness is clear since any fixed point of T is also a fixed point of T^{k}.
7. Consider maps from \mathbb{R} to itself. Find an explicit example of a map satisfying $|f(x)-f(y)|<$ $|x-y|$ but no fixed points.
Solution. The function $f(x)=e^{-x}+x$ satisfies $|f(x)-f(y)|<|x-y|$ by mean value theorem. However it does not have any fixed point.
