Solution 5

1. Show that the only open and closed set in \mathbb{R} (with standard metric $d(x, y)=|x-y|$) is the empty set and \mathbb{R} itself.

Solution. \mathbb{R} itself and hence the empty set are clearly open and closed. Let E be an open and closed set. Suppose E is not empty. Pick a point x_{0} from E. Let

$$
a=\inf \left\{a^{\prime}:\left(a^{\prime}, x_{0}\right] \subset E\right\}, \quad \text { and } \quad b=\sup \left\{b^{\prime}:\left[x_{0}, b^{\prime}\right) \subset E\right\}
$$

As E is open, we can find some $\left(a_{0}, b_{0}\right) \subset E$ containing x_{0}. These two definitions make sense. Suppose a is finite. From the definitions, there exists $\left\{a_{n}\right\} \subset E, a_{n} \rightarrow a$. Since E is closed, one has $a \in E$. As E is also open, $(a-\delta, a+\delta) \subset E$ for some small $\delta>0$. However, this contradicts with the definition of a. Hence $a=-\infty$. By the same arguments, $b=\infty$, so $(-\infty, \infty) \subset E$, that is $E=\mathbb{R}$.
2. Let $A=\{f \in C[-1,1]: f(0)=1, f(-1)=-1\}$. Show that A is closed in $\left(C[-1,1], d_{\infty}\right)$.

Solution. Let $f_{n} \rightarrow f$ in $\left(C[-1,1], d_{\infty}\right)$. Then, as $n \rightarrow \infty$,

$$
|1-f(0)|=\left|f_{n}(0)-f(0)\right| \leq \max _{x \in[-1,1]}\left|f_{n}(x)-f(x)\right|=\left\|f_{n}-f\right\|_{\infty} \rightarrow 0
$$

Thus $f(0)=1$. By the same arguments, one has $f(-1)=-1$. Hence $f \in A$ and A is closed in $\left(C[-1,1], d_{\infty}\right)$.
3. Show that f is continuous from (X, d) to (Y, ρ) if and only if $f^{-1}(F)$ is closed in X for all closed set F in Y.

Solution. Use $f^{-1}(Y \backslash F)=X \backslash f^{-1}(F)$ to reduce to the statement: f is continuous iff $f^{-1}(G)$ is open for open G.
4. Identify the boundary, interior and closure of the following sets in the indicated metric spaces:
(a) $A=[0,1] \cap \mathbb{Q}$ in (\mathbb{R}, standard metric);
(b) $B=\bigcup_{k=1}^{\infty}\left(\frac{1}{k+1}, \frac{1}{k}\right)$ in (\mathbb{R}, standard metric);
(c) $C=\mathbb{R}^{2} \backslash\{(1 / n, 0): n=1,2,3, \ldots\}$ in $\left(\mathbb{R}^{2}\right.$, Euclidean metric);
(d) $D=\{f \in C[0,1]: f(0)=f(1)\}$ in $\left(C[0,1], d_{\infty}\right)$.

Solution.

(a) $\partial A=[0,1], A^{\circ}=\emptyset, \bar{A}=[0,1]$;
(b) $\partial B=\{1 / k: k=1,2,3, \ldots\} \cup\{0\}, B^{\circ}=B=\bigcup_{k=1}^{\infty}\left(\frac{1}{k+1}, \frac{1}{k}\right), \bar{B}=[0,1]$;
(c) $\partial C=\left\{((0,0),(1,0),(1 / 2,0),(1 / 3,0), \ldots\}, C^{\circ}=\mathbb{R}^{2} \backslash\{((0,0),(1,0),(1 / 2,0),(1 / 3,0), \ldots\}\right.$, $\bar{C}=\mathbb{R}^{2} ;$
(d) $\partial D=D, D^{\circ}=\emptyset, \bar{D}=D$.

Let f satisfy $f(0)=f(1)$. For every $\varepsilon>0$, it is clear we can find some $g \in C[0,1]$ satisfying $\|g-f\|_{\infty}<\varepsilon$ but $g(0) \neq g(1)$. It shows that every metric ball $B_{\varepsilon}(f)$ must contain some functions lying outside this set. Hence, the boundary is also the set itself.
5. Let A and B be subsets of a metric space. Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Does $\overline{A \cap B}=\bar{A} \cap \bar{B}$? Justify your answer
Solution. We have $\bar{C} \subset \bar{D}$ whenever $C \subset D$ from Proposition 2.8. So $\bar{A} \cup \bar{B} \subset \bar{A} \cup B$. Conversely, if $x \in \overline{A \cup B}$, then for any $\varepsilon>0, B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_{j} \rightarrow 0$ such that $B_{\varepsilon_{j}}(x)$ has nonempty intersection with A or B, so $x \in \bar{A} \cup \bar{B}$. Alternatively, since $\bar{A} \cup \bar{B}$ is a closed set containing $A \cup B$, we have $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$ by Proposition 2.8.
On the other hand, $\overline{A \cap B}=\bar{A} \cap \bar{B}$ is not always true. For instance, consider intervals (a, b) and (b, c). We have $\overline{(a, b)} \cap \overline{(b, c)}=\{b\}$ but $\overline{(a, b) \cap(b, c)}=\emptyset$. Or you take A to be the set of all rationals and B all irrationals. Then $\overline{A \cap B}=\bar{\emptyset}=\emptyset$ but $\bar{A} \cap \bar{B}=\mathbb{R}$.

