Solution 5

1. Show that the only open and closed set in \mathbb{R} (with standard metric d(x, y) = |x - y|) is the empty set and \mathbb{R} itself.

Solution. \mathbb{R} itself and hence the empty set are clearly open and closed. Let E be an open and closed set. Suppose E is not empty. Pick a point x_0 from E. Let

$$a = \inf\{a': (a', x_0] \subset E\}, \text{ and } b = \sup\{b': [x_0, b') \subset E\}.$$

As E is open, we can find some $(a_0, b_0) \subset E$ containing x_0 . These two definitions make sense. Suppose a is finite. From the definitions, there exists $\{a_n\} \subset E, a_n \to a$. Since E is closed, one has $a \in E$. As E is also open, $(a - \delta, a + \delta) \subset E$ for some small $\delta > 0$. However, this contradicts with the definition of a. Hence $a = -\infty$. By the same arguments, $b = \infty$, so $(-\infty, \infty) \subset E$, that is $E = \mathbb{R}$.

2. Let $A = \{ f \in C[-1,1] : f(0) = 1, f(-1) = -1 \}$. Show that A is closed in $(C[-1,1], d_{\infty})$. Solution. Let $f_n \to f$ in $(C[-1,1], d_{\infty})$. Then, as $n \to \infty$,

$$|1 - f(0)| = |f_n(0) - f(0)| \le \max_{x \in [-1,1]} |f_n(x) - f(x)| = ||f_n - f||_{\infty} \to 0.$$

Thus f(0) = 1. By the same arguments, one has f(-1) = -1. Hence $f \in A$ and A is closed in $(C[-1, 1], d_{\infty})$.

3. Show that f is continuous from (X, d) to (Y, ρ) if and only if $f^{-1}(F)$ is closed in X for all closed set F in Y.

Solution. Use $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ to reduce to the statement: f is continuous iff $f^{-1}(G)$ is open for open G.

- 4. Identify the boundary, interior and closure of the following sets in the indicated metric spaces:
 - (a) $A = [0, 1] \cap \mathbb{Q}$ in (\mathbb{R} , standard metric);
 - (b) $B = \bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k}\right)$ in (\mathbb{R} , standard metric); (c) $C = \mathbb{R}^2 \setminus \{(1/n, 0) : n = 1, 2, 3, ...\}$ in (\mathbb{R}^2 , Euclidean metric);
 - (d) $D = \{ f \in C[0,1] : f(0) = f(1) \}$ in $(C[0,1], d_{\infty})$.

Solution.

(a) $\partial A = [0, 1], A^{\circ} = \emptyset, \overline{A} = [0, 1];$

(b)
$$\partial B = \{1/k : k = 1, 2, 3, ...\} \cup \{0\}, B^{\circ} = B = \bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k}\right), \overline{B} = [0, 1];$$

- (c) $\partial C = \{((0,0), (1,0), (1/2,0), (1/3,0), \dots\}, C^{\circ} = \mathbb{R}^2 \setminus \{((0,0), (1,0), (1/2,0), (1/3,0), \dots\}, \overline{C} = \mathbb{R}^2; \}$
- (d) $\partial D = D, D^{\circ} = \emptyset, \overline{D} = D.$

Let f satisfy f(0) = f(1). For every $\varepsilon > 0$, it is clear we can find some $g \in C[0,1]$ satisfying $||g - f||_{\infty} < \varepsilon$ but $g(0) \neq g(1)$. It shows that every metric ball $B_{\varepsilon}(f)$ must contain some functions lying outside this set. Hence, the boundary is also the set itself. 5. Let A and B be subsets of a metric space. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Does $\overline{A \cap B} = \overline{A} \cap \overline{B}$? Justify your answer

Solution. We have $\overline{C} \subset \overline{D}$ whenever $C \subset D$ from Proposition 2.8. So $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}$, then for any $\varepsilon > 0$, $B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_j \to 0$ such that $B_{\varepsilon_j}(x)$ has nonempty intersection with A or B, so $x \in \overline{A} \cup \overline{B}$. Alternatively, since $\overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$, we have $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ by Proposition 2.8.

On the other hand, $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is not always true. For instance, consider intervals (a, b) and (b, c). We have $\overline{(a, b)} \cap \overline{(b, c)} = \{b\}$ but $\overline{(a, b)} \cap \overline{(b, c)} = \emptyset$. Or you take A to be the set of all rationals and B all irrationals. Then $\overline{A \cap B} = \overline{\emptyset} = \emptyset$ but $\overline{A} \cap \overline{B} = \mathbb{R}$.