Solution 4

1. Draw the unit metric balls $B_r(0)$, $B_r^1(0)$ and $B_r^{\infty}(0)$ (with r = 1) for metrics d_2 , d_1 and d_{∞} on \mathbb{R}^2 respectively.

Solution. The unit ball $B_1^2(0)$ is the standard one, the unit ball in d_{∞} -metric consists of points (x, y) either |x| or |y| is equal to 1 and $|x|, |y| \le 1$, so $B_1^{\infty}(0)$ is the unit square. The unit ball $B_1^1(0)$ consists of points (x, y) satisfying $|x|+|y| \le 1$, so the boundary is described by the curves $x + y = 1, x, y \ge 0$, $x - y = 1, x \ge 0, y \le 0, -x + y = 1, x \le 0, y \ge 0$, and $-x - y = 1, x, y \le 0$. The result is the tilted square with vertices at (1,0), (0,1), (-1,0) and (0,-1).

2. Let (X, d) be a metric space and define

$$\rho(x,y) \equiv \frac{d(x,y)}{1+d(x,y)}$$

Show that

- (a) ρ is a metric on X.
- (b) A sequence converges in d if and only if it converges in ρ .
- (c) If ρ is equivalent to d, then $\exists C > 0$ such that $d(x, y) \leq C \ \forall x, y \in X$

Solution.

(a) M1 and M2 are obvious since d is a metric. To prove M3 consider the function $\phi(x) = x/(1+x)$. We need to show that $a \le b + c$ implies $\phi(a) \le \phi(b) + \phi(c)$. First observe that ϕ is increasing so $\phi(a) \le \phi(b+c)$ when $a \le b + c$. Then

$$\phi(b+c) = \frac{b+c}{1+b+c}$$

$$= \frac{b}{1+b+c} + \frac{c}{1+b+c}$$

$$\leq \frac{b}{1+b} + \frac{c}{1+c}$$

$$= \phi(b) + \phi(c) ,$$

(b) If $d(x_n, x) \to 0$, consider $0 \le \rho(x_n, x) \le d(x_n, x)$, result follows. If $\rho(x_n, y) \to 0$, then $d(x_n, x)$ is bounded by some C > 0. Consider

$$\frac{d(x_n, x)}{1+C} \le \frac{d(x_n, x)}{1+d(x_n, x)} = \rho(x_n, x)$$

Result follows.

- (c) If ρ is equivalent to d, then d is weaker than ρ . Hence, $\exists C > 0$ such that $d(x, y) \leq C\rho(x, y) \ \forall x, y \in X. \ \rho \leq 1$ obviously, result follows.
- 3. Give an example of two inequivalent metrics which have the same concept of convergence. i.e. convergence in $d \iff$ convergence in ρ .

Solution. Consider d and ρ in the previous problem and take X be the real line and d(x, y) = |x - y|. Clearly d is stronger than ρ but they are not equivalent because $\rho(x, y) \leq 1, \forall x, y$. Yet it is clear that $x_n \to x$ in d if and only if it is so in ρ . It shows that two inequivalent metrics could induce the same topology on a set.

4. Show that d_2 is stronger than d_1 on C[a, b] but they are not equivalent.

Solution. Letting $f, g \in C[a, b]$, by Cauchy-Schwarz inequality,

$$d_1(f,g) = \int_a^b |f-g| \le \sqrt{\int_a^b 1} \sqrt{\int_a^b (f-g)^2} = \sqrt{b-a} \ d_2(f,g),$$

so d_2 is stronger than d_1 . Next, define f_n as an even function so that $f_n(x) = 0$ for $x \ge 1$, $f_n(0) = n^{3/4}$ and linear between [0, 1/n]. Then $\{f_n\}$ satisfies our requirement.

- 5. A "functional" is a real-valued function defined on a space of functions. Show that the following functionals are continuous with respect to the given metric. (\mathbb{R} is always equipped with the standard metric d(c, y) = |x y|)
 - (a) $\Phi: (C[a, b], d_1) \to \mathbb{R}$ given by

$$\Phi(f) = \int_a^b \sqrt{1 + f^2(x)} dx.$$

- (b) $\Phi: (C[a, b], d_{\infty}) \to \mathbb{R}$ with same Φ in (a).
- (c) $\Psi: (C[-1,1], d_{\infty}) \to \mathbb{R}$ given by

$$\Psi(f) = f(0).$$

Solution.

(a) Let $h(y) = \sqrt{1+y^2}$. Then $\Phi(f) = \int_a^b h(f) dx$. Since $h'(y) = \frac{y}{\sqrt{1+y^2}} \le 1$, one has, by the mean value theorem

$$\begin{split} |\Phi(f) - \Phi(g)| &\leq \int_a^b |h(f) - h(g)| dx \leq \int_a^b |f - g| \max_{s \in (g, f)} |h'(s)| dx \\ &\leq \int_a^b |f - g| dx. \end{split}$$

Hence it is continuous in C[a, b] under the d_1 -distance.

- (b) As d_{∞} is stronger than d_1 , the functional is also continuous in d_{∞} .
- (c) $|\Psi(f) \Psi(g)| = |f(0) g(0)| \le \max_{x \in [-1,1]} |f(x) g(x)|.$ Hence it is continuous in the d_{∞} -metric.

6. Show that $\Psi: (C[-1,1], d_1) \to \mathbb{R}$ given by $\Psi(f) = f(0)$ is not continuous.

Solution. Let f_n be continuous function such that $f_n(x) = 1, x \in [-1/n, 1/n]; f_n(x) = 0, x \in [-2/n, 2/n]$, and $0 \le f_n \le 1$. Then $\Psi(f_n) = 1$ but $f_n \to 0$ in the d_1 -metric.