## Solution 4

1. Draw the unit metric balls $B_{r}(0), B_{r}^{1}(0)$ and $B_{r}^{\infty}(0)$ (with $r=1$ ) for metrics $d_{2}, d_{1}$ and $d_{\infty}$ on $\mathbb{R}^{2}$ respectively.
Solution. The unit ball $B_{1}^{2}(0)$ is the standard one, the unit ball in $d_{\infty}$-metric consists of points $(x, y)$ either $|x|$ or $|y|$ is equal to 1 and $|x|,|y| \leq 1$, so $B_{1}^{\infty}(0)$ is the unit square. The unit ball $B_{1}^{1}(0)$ consists of points $(x, y)$ satisfying $|x|+|y| \leq 1$, so the boundary is described by the curves $x+y=1, x, y \geq 0, x-y=1, x \geq 0, y \leq 0,-x+y=1, x \leq 0, y \geq 0$, and $-x-y=1, x, y \leq 0$. The result is the tilted square with vertices at $(1,0),(0,1),(-1,0)$ and $(0,-1)$.
2. Let $(X, d)$ be a metric space and define

$$
\rho(x, y) \equiv \frac{d(x, y)}{1+d(x, y)}
$$

Show that
(a) $\rho$ is a metric on $X$.
(b) A sequence converges in $d$ if and only if it converges in $\rho$.
(c) If $\rho$ is equivalent to $d$, then $\exists C>0$ such that $d(x, y) \leq C \forall x, y \in X$

## Solution.

(a) M1 and M2 are obvious since $d$ is a metric. To prove M3 consider the function $\phi(x)=x /(1+x)$. We need to show that $a \leq b+c$ implies $\phi(a) \leq \phi(b)+\phi(c)$. First observe that $\phi$ is increasing so $\phi(a) \leq \phi(b+c)$ when $a \leq b+c$. Then

$$
\begin{aligned}
\phi(b+c) & =\frac{b+c}{1+b+c} \\
& =\frac{b}{1+b+c}+\frac{c}{1+b+c} \\
& \leq \frac{b}{1+b}+\frac{c}{1+c} \\
& =\phi(b)+\phi(c)
\end{aligned}
$$

(b) If $d\left(x_{n}, x\right) \rightarrow 0$, consider $0 \leq \rho\left(x_{n}, x\right) \leq d\left(x_{n}, x\right)$, result follows.

If $\rho\left(x_{n}, y\right) \rightarrow 0$, then $d\left(x_{n}, x\right)$ is bounded by some $C>0$. Consider

$$
\frac{d\left(x_{n}, x\right)}{1+C} \leq \frac{d\left(x_{n}, x\right)}{1+d\left(x_{n}, x\right)}=\rho\left(x_{n}, x\right)
$$

Result follows.
(c) If $\rho$ is equivalent to $d$, then $d$ is weaker than $\rho$. Hence, $\exists C>0$ such that $d(x, y) \leq$ $C \rho(x, y) \forall x, y \in X . \rho \leq 1$ obviously, result follows.
3. Give an example of two inequivalent metrics which have the same concept of convergence. i.e. convergence in $d \Longleftrightarrow$ convergence in $\rho$.

Solution. Consider $d$ and $\rho$ in the previous problem and take $X$ be the real line and $d(x, y)=|x-y|$. Clearly $d$ is stronger than $\rho$ but they are not equivalent because $\rho(x, y) \leq$ $1, \forall x, y$. Yet it is clear that $x_{n} \rightarrow x$ in $d$ if and only if it is so in $\rho$. It shows that two inequivalent metrics could induce the same topology on a set.
4. Show that $d_{2}$ is stronger than $d_{1}$ on $C[a, b]$ but they are not equivalent.

Solution. Letting $f, g \in C[a, b]$, by Cauchy-Schwarz inequality,

$$
d_{1}(f, g)=\int_{a}^{b}|f-g| \leq \sqrt{\int_{a}^{b}} 1 \sqrt{\int_{a}^{b}(f-g)^{2}}=\sqrt{b-a} d_{2}(f, g)
$$

so $d_{2}$ is stronger than $d_{1}$. Next, define $f_{n}$ as an even function so that $f_{n}(x)=0$ for $x \geq 1, f_{n}(0)=n^{3 / 4}$ and linear between $[0,1 / n]$. Then $\left\{f_{n}\right\}$ satisfies our requirement.
5. A "functional" is a real-valued function defined on a space of functions. Show that the following functionals are continuous with respect to the given metric. ( $\mathbb{R}$ is always equipped with the standard metric $d(c, y)=|x-y|)$
(a) $\Phi:\left(C[a, b], d_{1}\right) \rightarrow \mathbb{R}$ given by

$$
\Phi(f)=\int_{a}^{b} \sqrt{1+f^{2}(x)} d x .
$$

(b) $\Phi:\left(C[a, b], d_{\infty}\right) \rightarrow \mathbb{R}$ with same $\Phi$ in (a).
(c) $\Psi:\left(C[-1,1], d_{\infty}\right) \rightarrow \mathbb{R}$ given by

$$
\Psi(f)=f(0)
$$

## Solution.

(a) Let $h(y)=\sqrt{1+y^{2}}$. Then $\Phi(f)=\int_{a}^{b} h(f) d x$. Since $h^{\prime}(y)=\frac{y}{\sqrt{1+y^{2}}} \leq 1$, one has, by the mean value theorem

$$
\begin{aligned}
|\Phi(f)-\Phi(g)| & \leq \int_{a}^{b}|h(f)-h(g)| d x \leq \int_{a}^{b}|f-g| \max _{s \in(g, f)}\left|h^{\prime}(s)\right| d x \\
& \leq \int_{a}^{b}|f-g| d x .
\end{aligned}
$$

Hence it is continuous in $C[a, b]$ under the $d_{1}$-distance.
(b) As $d_{\infty}$ is stronger than $d_{1}$, the functional is also continuous in $d_{\infty}$.
(c) $|\Psi(f)-\Psi(g)|=|f(0)-g(0)| \leq \max _{x \in[-1,1]}|f(x)-g(x)|$. Hence it is continuous in the $d_{\infty}$-metric.
6. Show that $\Psi:\left(C[-1,1], d_{1}\right) \rightarrow \mathbb{R}$ given by $\Psi(f)=f(0)$ is not continuous.

Solution. Let $f_{n}$ be continuous function such that $f_{n}(x)=1, x \in[-1 / n, 1 / n] ; f_{n}(x)=$ $0, x \in[-2 / n, 2 / n]$, and $0 \leq f_{n} \leq 1$. Then $\Psi\left(f_{n}\right)=1$ but $f_{n} \rightarrow 0$ in the $d_{1}$-metric.

