Solution 3

1. Let f, g and $h \in R[a, b]$. Show that

$$
\|f-g\|_{2} \leq\|f-h\|_{2}+\|h-g\|_{2}
$$

When does the equality sign hold?
Solution. Instead we prove

$$
\sqrt{\int(F+G)^{2}} \leq \sqrt{\int F^{2}}+\sqrt{\int G^{2}}
$$

Taking square, it amounts to proving

$$
\left|\int F G\right| \leq \sqrt{\int F^{2}} \sqrt{\int G^{2}}
$$

which is the Cauchy-Schwarz Inequality we learned in MATH2060.
Equality sign holds if and only if $h=\lambda f+(1-\lambda) g$ almost everywhere, where $\lambda \in[0,1]$.
2. Let $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$, be an orthonormal set on $R[a, b]$. Show that $\forall f \in R[a, b]$,

$$
\sum_{k}<f, \varphi_{k}>_{2}^{2} \leq \int_{a}^{b} f^{2}
$$

(Note that $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ may not be a basis.)
Solution. It follows from expanding

$$
\begin{aligned}
0 \leq & \int_{a}^{b}\left(f-\sum_{k=1}^{n}<f, \varphi_{k}>_{2} \varphi_{k}>\right)^{2} d x \\
= & \int_{a}^{b} f^{2} d x-2 \sum_{k=1}^{n}<f, \varphi_{k}>_{2}^{2} \\
& \quad+\sum_{j, k=1}^{n}<f, \varphi_{k}>_{2}<f, \varphi_{j}>_{2}<\varphi_{j}, \varphi_{k}>_{2} \\
= & \int_{a}^{b} f^{2} d x-\sum_{k=1}^{n}<f, \varphi_{k}>_{2}^{2}
\end{aligned}
$$

and then letting n go to ∞.
This is called Bessel inequality.
3. Let f, g be 2π periodic functions integrable on $[-\pi, \pi]$. Show that

$$
\left.\int_{-\pi}^{\pi} f g=2 \pi a_{0}(f) a_{0}(g)+\pi \sum_{n=1}^{\infty}\left(a_{n}(f) a_{n}(g)+b_{n}(f)\right) b_{n}(g)\right)
$$

where a_{0}, a_{n} and b_{n} are corresponding Fourier coefficients.
Solution. Parseval Identity asserts

$$
\|f \pm g\|_{2}^{2}=2 \pi\left(a_{0}(f) \pm a_{0}(g)\right)^{2}+\pi \sum_{n=1}^{\infty}\left(\left(a_{n}(f) \pm a_{n}(g)\right)^{2}+\left(b_{n}(f) \pm b_{n}(g)\right)^{2}\right)
$$

The desired result comes from adding up these two identities and dividing by 4.

The meaning. Recall $R_{2 \pi}$ is an inner product space with the L^{2}-product. Let \mathcal{C}^{2} be the space of $\left\{c_{-n}=\overline{c_{n}} \in \mathcal{C}: c_{n}=a_{n}+i b_{n}\right\}$ where all bisequences satisfy $\sum_{n}\left|c_{n}\right|^{2}<\infty$. We can put an inner product on \mathcal{C}^{2} by setting, in apparent notations,

$$
\left\langle c_{n}, c_{n}^{\prime}\right\rangle=2 \pi a_{0} c_{0}+\pi \sum_{n=1}^{\infty}\left(a_{n} c_{n}+b_{n} d_{n}\right)
$$

So both $R_{2 \pi}$ and \mathcal{C}^{2} become inner product spaces. The identity above shows that the Fourier transform satisfies

$$
\langle f, g\rangle_{2}=\langle\hat{f}, \hat{g}\rangle
$$

that is, it is an "isometry".
4. Show that:
(a) $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}$ by Fourier Series of $|x|$
(b) $\sum_{n=0}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$. by Fourier Series of x^{2}

Solution.

(a) By the Fourier series of $|x|$

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x
$$

Then one computes

$$
\int_{-\pi}^{\pi} x^{2} d x=\frac{2 \pi^{3}}{3}
$$

On the other hand, by the Parseval identity, this equals

$$
2 \pi \frac{\pi^{2}}{4}+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}} \pi
$$

Hence

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}
$$

(b) By the Fourier series of x^{2},

$$
x^{2}=\frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x
$$

Integrate to obtain

$$
\frac{x^{3}}{3}-\frac{\pi^{2} x}{3}=-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}} \sin n x
$$

Then one computes

$$
\int_{-\pi}^{\pi}\left(\frac{x^{3}}{3}-\frac{\pi^{2} x}{3}\right)^{2} d x=\frac{16 \pi^{7}}{945}
$$

On the other hand, by the Parseval identity, this equals

$$
\sum_{n=1}^{\infty}\left(-4 \frac{(-1)^{n+1}}{n^{3}}\right)^{2} \pi=\sum_{n=1}^{\infty} \frac{16 \pi}{n^{6}}
$$

Hence

$$
\sum_{n=0}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

5. Use Wirtinger's inequality to show that $\forall f \in C[0, \pi]$ satisfying $f(0)=f(\pi)=0$ and $f^{\prime}(x)$ exists for all $x \in[0, \pi]$ and $f^{\prime} \in R[0, \pi]$, the inequality

$$
\int_{0}^{\pi}|f|^{2} \leq \int_{0}^{\pi}\left|f^{\prime}\right|^{2}
$$

holds.
When does the equality sign hold?
Solution. Extend the function f as an odd function F on $[-\pi, \pi]$. It is readily checked that F is differentiable on $[-\pi, \pi]$ with $F^{\prime} \in R[-\pi, \pi]$. The inequality now follows from Wirtinger's inequality. Furthermore, when equality holds, $F=a+b \cos x+c \sin x$. As F is odd, $b=0$. As $F(0)=0, a=0$ and $F=c \sin x$. So F is a scalar multiple of the sine function when equality in this inequality holds.

