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Solution 2

1. Show that a function is a trigonometric polynomial if and only if it is a finite Fourier series.

Solution A trigonometric polynomail of degree N is given by

f(x) = p(cosx, sinx) =
N∑
n=0

n∑
k=0

ck,n−k(cosx)k(sinx)n−k,

where p(x, y) =
∑N

n=0

∑n
k=0 ck,n−kx

kyn−k is a general polynomial of degree N in two
variables x, y.

Suppose f(x) is a trigonometric polynomial of order N , say

f(x) = p(cosx, sinx) =

N∑
n=0

n∑
k=0

ck,n−k(cosx)k(sinx)n−k.

By Euler’s formula, cosx = 1
2(eix + e−ix), sinx = 1

2i(e
ix − e−ix), one has

f(x) = p

(
eix + e−ix

2
,
eix − e−ix

2i

)
=

N∑
n=0

n∑
k=0

ck,n−k(
eix + e−ix

2
)k(

eix − e−ix

2i
)n−k

=
N∑
n=0

n∑
k=0

ck,n−k2
n

einxin−k

[
k∑
r=0

e2irx

][
n−k∑
s=0

e2isx

]

=

N∑
n=0

n∑
m=−n

dte
imx

=
N∑

n=−N
cne

inx,

by collecting terms in the last two steps. Hence f(x) is a finite Fourier series of order N .

On the other hand, suppose f(x) is a finite Fourier series given by

f(x) =
N∑

n=−N
cne

inx.

Applying Euler’s formula and expanding the binomials, we have

f(x) = c0 +
N∑
n=1

(
cn(eix)n + c−n(e−ix)n

)
= c0 +

N∑
n=1

(cn(cosx+ i sinx)n + c−n(cosx− i sinx)n)

= c0 +
N∑
n=1

(
cn

n∑
k=0

(
n

k

)
(cosx)k(i sinx)n−k + c−n

n∑
k=0

(
n

k

)
(cosx)k(−i sinx)n−k)

)

= c0 +

N∑
n=1

n∑
k=0

(
n

k

)
in−k(cn + (−1)n−kc−n)(cosx)k(sinx)n−k

= p(cosx, sinx),
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where p(x, y) = c0+
∑N

n=1

∑n
k=0

(
n
k

)
in−k(cn+(−1)n−kc−n)xkyn−k is a polynomial of degree

N in two variables x, y. Hence f(x) is a trigonometric polynomial of degree N .

2. Let f be a 2π periodic function integrable on [−π, π]. Show that F (x) =
∫ x
0 f(x)dx is

2π-periodic if and only if
∫ π
−π fdx = 0. When this holds, find an(F ) and bn(F ) in terms

of an(f) and bn(f) ∀n 6= 0.

Solution Since f ∈ R2π,

F (x+ 2π)− F (x) =

∫ x+2π

x
f(x)dx =

∫ 2π

0
f(x)dx.

Hence F is 2π-periodic if and only if f has zero mean. In this case, using Fubini’s theorem,
one has

F̂ (n) =
1

2π

∫ 2π

0

∫ x

0
f(y)e−inxdydx =

1

2π

∫ 2π

0

∫ 2π

y
f(y)e−inxdxdy

=
1

2π

∫ 2π

0
f(y)

1

−in
(1− e−iny)dy =

1

in
f̂(n), ∀n 6= 0.

If f is further assumed to be continuous, then using the Fundamental Theorem of Calculus
and integration by parts, one can also deduce the same result:

F̂ (n) =
1

2π

∫ 2π

0

∫ x

0
f(y)e−inxdydx = − 1

in2π

∫ 2π

0

∫ x

0
f(y)dyde−inx

=
1

in2π

∫ 2π

0
f(x)e−inxdx =

1

in
f̂(n), ∀n 6= 0.

Then, ∀n ≥ 1

bn(F ) = iF̂ (n)− iF̂ (−n) =
i(−i)f̂(n)−i(−i)(−1)f̂(−n)

n = f̂(n)+f̂(−n)
n = an(f)

n

Similarly, an(F ) = F̂ (n) + F̂ (−n) =
−if̂(n)−i(−1)f̂(−n)

n = −i(f̂(n)−f̂(−n))
n = − bn(f)

n

3. Let f be a C∞ 2π-periodic complex-valued function. Show that the (complex) Fourier
coefficient cn = ◦(n−k) as n→ ±∞ for every k.

Solution A repeated application of Property 2 in Section 1.2 shows that (in)k+1f̂(n) =
ˆf (k+1)(n) for every k. The right hand side is uniformly bounded due to the Riemann-

Lebsegue Lemma applied to the integrable function f (k+1). It follows that

|f̂(n)| ≤ M

nk+1
= ◦(n−k), M = sup{ ˆfk+1(n) : n ≥ 1}.

4. Show that
π2

12
=
∞∑
k=1

(−1)n+1

n2
.

Solution By Homework 1 Q3 a), one has

x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx.
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Since x2 ∈ R2π is smooth, by Theorem 1.5, one has

0 =
π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cos 0.

Hence
π2

12
=
∞∑
k=1

(−1)n+1

n2
.

5. Using Thm 1.6 of Sect 1.3 (in the Notes of Lecture 3), show that for t ∈ (0, 1),

π cos tx

sin tπ
=

1

t
+

∞∑
n=1

2t

t2 − n2
(−1)n cosnx, x ∈ [−π, π].

Solution Consider the Fourier series of the function cos tx, x ∈ [−π, π], t ∈ (0, 1)
By integration by parts, one has

f(x) =
π cos tx

sin tπ
∼ 1

t
+

∞∑
n=1

2t

t2 − n2
(−1)n cosnx.

Since f is smooth in (0, 2π), and f(π−) = f(−π+) due to cos tx being an even function,
by Theorem 1.6, one has

π cos tx

sin tπ
=

1

t
+

∞∑
n=1

2t

t2 − n2
(−1)n cosnx, x ∈ [−π, π].


