Solution 1

1. Let f be a 2π-periodic function integrable on $[-\pi, \pi]$. Show that it is integrable over any finite interval and

$$
\int_{I} f(x) d x=\int_{-\pi}^{\pi} f(x) d x
$$

for any interval I of length 2π.

Solution It is clear that f is also integrable on $[n \pi,(n+2) \pi], n \in \mathbb{Z}$, so it is integrable on any finite interval. Let $I=[a, a+2 \pi]$ for some real number a. Since the length of I is 2π, there exists some n such that $n \pi \in I$ but $(n+2) \pi$ does not belong to the interior of I. We have

$$
\int_{a}^{a+2 \pi} f(x) d x=\int_{a}^{n \pi} f(x) d x+\int_{n \pi}^{a+2 \pi} f(x) d x
$$

Using

$$
\int_{a}^{n \pi} f(x) d x=\int_{a+2 \pi}^{(n+2) \pi} f(x) d x
$$

(by a change of variables), we get

$$
\int_{a}^{a+2 \pi} f(x) d x=\int_{a+2 \pi}^{(n+2) \pi} f(x) d x+\int_{n \pi}^{a+2 \pi} f(x) d x=\int_{n \pi}^{(n+2) \pi}
$$

Now, using a change of variables again we get

$$
\int_{n \pi}^{(n+2) \pi} f(x) d x=\int_{-\pi}^{\pi} f(x) d x
$$

2. Show that the Fourier series of every even function is a cosine series and the Fourier series of every odd function is a sine series.
Solution Write

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Suppose $f(x)$ is an even function. Then, for $n \geq 1$, we have

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin n x f(x) d x=\frac{1}{\pi}\left[\int_{-\pi}^{0} \sin n x f(x) d x+\int_{0}^{\pi} \sin n x f(x) d x\right] .
$$

By a change of variable and using $f(-x)=f(x)$ since $f(x)$ is an even function,

$$
\int_{-\pi}^{0} \sin n x f(x) d x=\int_{0}^{\pi} \sin (-n x) f(-x) d x=-\int_{0}^{\pi} \sin n x f(x) d x,
$$

one has

$$
b_{n}=\frac{1}{\pi}\left[-\int_{0}^{\pi} \sin n x f(x) d x+\int_{0}^{\pi} \sin n x f(x) d x\right]=0 .
$$

Hence the Fourier series of every even function f is a cosine series.
Now suppose $f(x)$ is an odd function. Then, for $n \geq 1$, we have

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x f(x) d x=\frac{1}{\pi}\left[\int_{-\pi}^{0} \cos n x f(x) d x+\int_{0}^{\pi} \cos n x f(x) d x\right] .
$$

By a change of variable and using $f(-x)=-f(x)$ since $f(x)$ is an odd function,

$$
\int_{-\pi}^{0} \cos n x f(x) d x=\int_{0}^{\pi} \cos (-n x) f(-x) d x=-\int_{0}^{\pi} \cos n x f(x) d x
$$

one has

$$
a_{n}=\frac{1}{\pi}\left[-\int_{0}^{\pi} \cos n x f(x) d x+\int_{0}^{\pi} \cos n x f(x) d x\right]=0
$$

Furthermore, by a change of variable and using $f(-x)=-f(x)$,

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi}\left[\int_{-\pi}^{0} f(x) d x+\int_{0}^{\pi} f(x) d x\right] \\
& =\frac{1}{2 \pi}\left[-\int_{0}^{\pi} f(x) d x+\int_{0}^{\pi} f(x) d x\right]=0
\end{aligned}
$$

Hence the Fourier series of every odd function f is a sine series.
3. Each of the following functions (on the left hand side) are defined on $[-\pi, \pi]$. Sketch the 2π-periodic expansion and verify their Fourier expansion on the right hand side.
(a)

$$
x^{2} \sim \frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x
$$

(b)

$$
|x| \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x
$$

(c)

$$
f(x)=\left\{\begin{array}{ll}
1, & x \in[0, \pi] \\
-1, & x \in[-\pi, 0]
\end{array} \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x\right.
$$

(d)

$$
g(x)=\left\{\begin{array}{ll}
x(\pi-x), & x \in[0, \pi) \\
x(\pi+x), & x \in(-\pi, 0)
\end{array} \sim \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \sin (2 n-1) x\right.
$$

Solution

(a) Consider the function $f_{1}(x)=x^{2}$. As $f_{1}(x)$ is even, its Fourier series is a cosine series and hence $b_{n}=0$.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{2 \pi} \frac{x^{3}}{3}\right|_{-\pi} ^{\pi}=\frac{\pi^{2}}{3}
$$

and by integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x \\
& =\left.\frac{1}{n \pi} x^{2} \sin n x\right|_{-\pi} ^{\pi}-\frac{2}{n \pi} \int_{-\pi}^{\pi} x \sin n x d x \\
& =\left.\frac{2}{n^{2} \pi} x \cos n x\right|_{-\pi} ^{\pi}-\frac{2}{n^{2} \pi} \int_{-\pi}^{\pi} \cos n x d x \\
& =4 \frac{(-1)^{n}}{n^{2}}
\end{aligned}
$$

(b) Consider the function $f_{2}(x)=|x|$. As $f_{2}(x)$ is even, its Fourier series is a cosine series and hence $b_{n}=0$.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\left.\frac{1}{2 \pi} \frac{x^{2}}{2}\right|_{-\pi} ^{\pi}=\frac{\pi}{2}
$$

and by integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\left.\frac{2}{n \pi} x \sin n x\right|_{0} ^{\pi}-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x \\
& =-\left.\frac{2}{n^{2} \pi} \cos n x\right|_{0} ^{\pi} \\
& =-2 \frac{\left[(-1)^{n}-1\right]}{n^{2} \pi}
\end{aligned}
$$

(c) As $f(x)$ is odd, its Fourier series is a sine series and hence $a_{n}=0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x \\
& =\left.\frac{2}{n \pi} \cos n x\right|_{0} ^{\pi} \\
& =2 \frac{\left[(-1)^{n}-1\right]}{n \pi}
\end{aligned}
$$

(d) As $g(x)$ is odd, its Fourier series is a sine series and hence $a_{n}=0$. By integration by parts,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin n x d x \\
& =-\left.\frac{2}{n \pi} x(\pi-x) \cos n x\right|_{0} ^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi}(\pi-2 x) \cos n x d x \\
& =\left.\frac{2}{n^{2} \pi}(\pi-2 x) \sin n x\right|_{0} ^{\pi}+\frac{4}{n^{2} \pi} \int_{0}^{\pi} \sin n x d x \\
& =-\left.\frac{4}{n^{3} \pi} \cos n x\right|_{0} ^{\pi} \\
& =-\frac{4}{n^{3} \pi}\left[(-1)^{n}-1\right] .
\end{aligned}
$$

4. Consider the function $f(x)=x^{2}$ on $(0,2 \pi]$ and its 2π-periodic extension \tilde{f} by $\tilde{f}(x)=$ $f(x-2 k \pi)$ for $x \in(2 k \pi, 2(k+1) \pi]$, Sketch \tilde{f} and show that

$$
x^{2} \sim \frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

for $x \in[0,2 \pi]$.

Solution

Consider the function $f(x)=x^{2}$.

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{2 \pi} \frac{x^{3}}{3}\right|_{0} ^{2}=\frac{4 \pi^{2}}{3}
$$

and by integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \cos n x d x \\
& =\left.\frac{1}{n \pi} x^{2} \sin n x\right|_{0} ^{2 \pi}-\frac{1}{n \pi} \int_{0}^{2 \pi} x \sin n x d x \\
& =\left.\frac{2}{n^{2} \pi} x \cos n x\right|_{0} ^{2 \pi}-\frac{2}{n^{2} \pi} \int_{0}^{2 \pi} \cos n x d x \\
& =\frac{4}{n^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \sin n x d x \\
& =-\left.\frac{1}{n \pi} x^{2} \cos n x\right|_{0} ^{2 \pi}+\frac{2}{n \pi} \int_{0}^{2 \pi} x \cos n x d x \\
& =-\frac{4 \pi}{n}+\left.\frac{2}{n^{2} \pi} x \sin n x\right|_{0} ^{2 \pi}-\frac{2}{n^{2} \pi} \int_{0}^{2 \pi} \sin n x d x \\
& =-\frac{4 \pi}{n}
\end{aligned}
$$

