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1. (a)

a+ b = 0

(−a) + (a+ b) = (−a) + 0

(−a+ a) + b = −a
0 + b = −a

b = −a

(b) Since (−a) + a = 0, the result in (a) shows that a = −(−a).

(c) Since
a+ [(−1)(a)] = (1 + (−1))a = 0 · a = 0,

the result in part (a) shows that (−1)a = −a.

(d) This part follows directly from part (b) and (c).

(e) From part (c),

−(a+ b) = (−1)(a+ b) = (−1)a+ (−1)b = (−a) + (−b).

(f)

(−a) · (−b) = [(−1)a] · [(−1)b]

= [a(−1)] · [(−1)b]

= a{(−1)[(−1)b]}
= a{[(−1)(−1)]b}
= a · b.

(g) Note that we need to assume a 6= 0. It suffices to show that

(−a) ·
(
−1

a

)
= 1.

From part (c), we have

(−a) ·
(
−1

a

)
= [(−1)a] ·

[
(−1)

(
1

a

)]
= a[(−1)(−1)]

(
1

a

)
= a

(
1

a

)
= 1.
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(h)

−
(a
b

)
= (−1)[a

(
1

b

)
] = [(−1)a]

(
1

b

)
=

(−a)

b

2.

a · a = a

a · a+ (−a) = a+ (−a)

a · a+ (−1) · a = 0

(a+ (−1)) · a = 0.

Thus, a+ (−1) = 0 or a = 0, that is, a = 1 or a = 0.

3. It suffices to show that

(ab)

[(
1

a

)(
1

b

)]
= (ab)

[(
1

b

)(
1

a

)]
= a[b

(
1

b

)
]

(
1

a

)
= a

(
1

a

)
= 1.

4. (a) It suffices to show that

(b+ d)− (a+ c) = (b− a) + (d− c) ≥ b− a > 0.

(b) 0 ≤ ac is trivial. For the second inequality, we have

bd− bc = b(d− c) ∈ P ∪ {0}

and
bc− ac = (b− a)c ∈ P ∪ {0}.

Thus, 0 ≤ ac ≤ bd.

5. (a) The equality follows from the definition of the inverses. We need show
that 1

a
∈ P. By means of a contradiction, we suppose 1

a
/∈ P. Since

1
a
6= 0 (otherwise a · 1

a
= 0 6= 1), we must have − 1

a
∈ P by the

Trichotomy property. Since P is closed under multiplications, we have

−1 = a ·
(
−1

a

)
∈ P.

It is a contradiction and hence 1
a
∈ P.
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(b) It suffices to show that

b− 1

2
(a+ b) =

1

2
(a+ b)− a =

1

2
(b− a) ∈ P

since 1
2
, b− a ∈ P.

6. (a) We use Mathematical Induction. Both the first step and the induction
step are trivial.

(b) Suppose there exists n,m ∈ N such that 2n = 2m+ 1. Clearly n > m
and so n−m ∈ N. However, n−m = 1

2
/∈ N and it is a contradiction.

7. Clearly S1 is bounded below by 0. Moreover, for each ε > 0,

0 + ε <
ε

2
∈ S1,

so 0 is the greatest lower bound and inf S1 = 0.

As for an upper bound of S1, it does not exist and it follows from the
Archimedian Property.

8. inf S2 = 0 and S2 is not bounded above. The same arguments as in the last
problem continues to hold.

9. Clearly, S3 is bounded above by 1 and 1 ∈ S3. So supS3 = 1. For the
lower boundedness, clearly, S3 is bounded below by 0 and given ε > 0, the
Archimedian Property shows the existence of n ∈ N such that

0 + ε <
1

n
.

Hence, inf S3 = 0.

10. Clearly, S4 is bounded below by 0 and above by 2. Since 0, 2 ∈ S4 = {0, 2},
inf S4 = 0 and supS4 = 2.

11. Since S5 is bounded below by 0, we must have inf S5 ≥ 0. Also, S3 ⊂ S5

shows that inf S5 ≤ inf S3 = 0. Hence, inf S5 = 0.

12. Denote t = sup{−s : s ∈ S}. We need to show that −t is a lower bound of
S and t is the maximal among the lower bounds. Now, by the definition of
an upper bound

−s ≤ t ∀s ∈ S,

that is,
s ≥ −t s ∈ S
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and so −t is a lower bound. Given ε > 0, since t is the least upper bound,
there exists s ∈ S such that

t− ε < −s,

or,
s < −t+ ε.

This shows that −t is maximal among the lower bounds and the proof is
completed.

13. We will prove the statement:

Given a uniformly bounded family of non-empty sets {Aα}α∈I , where I is
an index set,

sup

(⋃
α∈I

Aα

)
= sup{supAα : α ∈ I}.

Here, the family of sets is uniformly bounded if there exists M1,M2 ∈ R
such that M1 ≤ a ≤ M2 for all a ∈ ∪α∈IAα. Denote βα = supAα and
β = sup∪α∈IAα. First, since Aα ⊂ ∪α∈IAα, βα ≤ β for all α ∈ I. In
particular, supα∈I βα ≤ β. Now, we show that β is the minimal among the
upper bounds. By the definition of β, given ε > 0, there exists a ∈ ∪α∈IAα
such that β − ε < a. Without loss of generality, we may assume a ∈ Aα0

for some α0 ∈ I and so
β − ε < a ≤ βα0 .

This shows that β is the minimal among the upper bounds and the proof
is completed.

Note that the conclusion is false if we do not add the uniformly bounded
condition in the assumption for which the existence of β is not a must.
Consider the family of sets {{x}}x∈R, then each of the set {x} is bounded
whereas the family of sets is not bounded as a whole.

14. Set A = S and B = {u} in the previous problem and the result follows.

15. We use Mathematical Induction. The first step is trivial and the induction
step follows from the last problem.

16. Clearly, −1, 1 ∈ S and S is bounded above and below by 1 and −1 respec-
tively and hence inf S = −1 and supS = 1.

17. We only prove the first equality. From the definitions, a ≤ supA and
b ≤ supB for all a ∈ A, b ∈ B. Hence, a + b ≤ supA + supB for all
a ∈ A, b ∈ B. This shows that sup (A+B) ≤ supA+ supB. To show that
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it is minimal among the upper bounds, given ε > 0 there exists aε ∈ A and
bε ∈ B such that

supA− ε

2
< aε

and
supB − ε

2
< bε.

Summing them together,

(supA+ supB)− ε < aε + bε ∈ A+B

and the result follows.

18. Using the Mathematical Induction, we can easily show that 2n > n for any
n ∈ N. The result then follows from an application of the Archimedian
Property.

19. Note that x < ru < y is equivalent to x
u
< r < y

u
and so the statement is

equivalent to the fact that Q is dense in R (please refer to Chapter 2 for
the proof).

20. Note that a
n
< b is equivalent to a

b
< n and so that it follows from the

Archimedian Property.

21. Clearly, 0 ∈ In for any n ∈ N and so 0 ∈ ∩∞n=1. Now, given any 0 < ε < 1,
the Archimedian Property shows that there exists nε ∈ N such that 1

nε
< ε,

meaning ε /∈ Inε and so ε /∈ ∩∞n=1In.

22. The same argument holds except 0 /∈ ∩∞n=1Jn.

23. The correct statement is ∩∞n=1Kn = ∅. Now, given any x ∈ R, the Archime-
dian Property shows the existence of nx ∈ N such that x < nx. This shows
that x /∈ Kn and hence x /∈ ∩∞n=1Kn. Since x ∈ R is arbitrary, we conclude
that ∩∞n=1Kn = ∅.

24. The first statement is trivial and the second statement follows from the
nested property that I2n ⊆ I2n−1 for n ∈ N.

5


