THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT 5000 Analysis I 2015-2016

Suggested Solution to Problem Set 7

1. Let $\varepsilon>0$ be given. Take $\delta=\varepsilon$, then for any tagged partition x_{0}, \cdots, x_{n} and t_{0}, \cdots, t_{n-1} with mesh $<\delta$, we have

$$
\begin{aligned}
\left|\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)-1\right| & =\left|f\left(t_{0}\right)\left(x_{1}-x_{0}\right)+\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)-\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\right| \\
& =\left|\left(f\left(t_{0}\right)-1\right)\left(x_{1}-x_{0}\right)\right| \\
& <\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, f is Riemann integrable on $[0,1]$ and $\int_{0}^{1} f=1$.
To see that f is Darboux integrable, note that

$$
U_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=1
$$

and

$$
L_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)=1-\left(x_{1}-x_{0}\right) .
$$

Hence,

$$
U_{f}=\overline{\int_{0}^{1}} f=1=\underline{\int_{0}^{1}} f=L_{f}
$$

and f is Darboux integrable with $\int_{0}^{1} f=1$.
2. Let $\varepsilon>0$ be given. Take $\delta=\varepsilon$, then for any tagged partition x_{0}, \cdots, x_{n} and t_{0}, \cdots, t_{n-1} with mesh $<\delta$, we have

$$
\begin{aligned}
\left|\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)-\frac{1}{2}\right| & =\left|\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)-\sum_{i=0}^{n-1} \frac{1}{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}-x_{i}\right)\right| \\
& =\left|\sum_{i=0}^{n-1}\left(f\left(t_{i}\right)-\frac{1}{2}\left(x_{i+1}-x_{i}\right)\right)\left(x_{i+1}-x_{i}\right)\right| \\
& \leq \sum_{i=0}^{n-1} \frac{1}{2}\left(x_{i+1}-x_{i}\right)^{2} \\
& <\frac{\varepsilon}{2} \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \\
& =\frac{\varepsilon}{2} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, f is Riemann integrable on $[0,1]$ and $\int_{0}^{1} f=\frac{1}{2}$.
To see that f is Darboux integrable, note that

$$
U_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=\sum_{i=0}^{n-1} x_{i+1}\left(x_{i+1}-x_{i}\right)
$$

and

$$
L_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=\sum_{i=0}^{n-1} x_{i}\left(x_{i+1}-x_{i}\right) .
$$

Since

$$
L_{f, P}<\sum_{i=0}^{n-1} \frac{1}{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}-x_{i}\right)<U_{f, P},
$$

by repeating the above calculations we get

$$
\overline{\int_{0}^{1}} f=\frac{1}{2}=\underline{\int_{0}^{1}} f
$$

Hence, f is Darboux integrable with $\int_{0}^{1} f=1$.
3. Note that

$$
U_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \cdot 1=1
$$

and

$$
L_{f, P}=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \cdot 0=1 .
$$

Hence,

$$
\overline{\int_{0}^{1}} f=1 \neq 0=\underline{\int_{0}^{1}} f
$$

and f is not integrable.
4. Let $\varepsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{2}{N}<\varepsilon$. Take $\delta=\varepsilon$, then for any tagged partition x_{0}, \cdots, x_{n} and t_{0}, \cdots, t_{n-1} with mesh $<\delta$, we have

$$
\begin{aligned}
\left|\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)-0\right| & =\left(\sum_{x_{i+1} \leq \frac{1}{N}}+\sum_{x_{i+1}>\frac{1}{N}}\right) f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& =\sum_{x_{i+1} \leq \frac{1}{N}} 1 \cdot\left(x_{i+1}-x_{i}\right)+\sum_{x_{i+1}>\frac{1}{N}} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& \leq \frac{1}{N}+\sum_{x_{i+1}>\frac{1}{N}} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right) .
\end{aligned}
$$

Note that there can only be at most $N-1$ tags with $t_{i}>\frac{1}{N}$, so

$$
\left|\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)-0\right| \leq \frac{1}{N}+(N-1) \frac{1}{N^{2}}<\frac{2}{N}<\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, $\int_{0}^{1} f=0$.
5. Let $\varepsilon>0$ be given. Since f is integrable, we can choose $\delta>0$ such that for all partitions with mesh $<\delta$, we have

$$
U_{f, P}-L_{f, P}<\varepsilon .
$$

Hence,

$$
\begin{aligned}
U_{|f|, P}-L_{|f|, P} & =\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(\sup _{x \in\left[x_{i}, x_{i+1}\right]}|f|(x)-\inf _{x \in\left[x_{i}, x_{i+1}\right]}|f|(x)\right) \\
& \leq \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(\sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)-\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)\right) \\
& =U_{f, P}-L_{f, P} \\
& <\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $|f|$ is integrable.
By the hint, $H=\frac{1}{2}(f+g+|f-g|)$ and each term is integrable. Since, integrable functions form a vector space, H is integrable.
6.

$$
\begin{aligned}
S(\alpha f+\beta g, P, \vec{c}) & =\sum_{i=0}^{n-1}(\alpha f+\beta g)\left(t_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& =\alpha \sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)+\beta \sum_{i=0}^{n-1} g\left(t_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& =\alpha S(f, P, \vec{c})+\beta S(g, P, \vec{c})
\end{aligned}
$$

Now, let $\varepsilon>0$ is given. Let δ_{1}, δ_{2} be chosen corresponding to $\frac{\varepsilon}{|\alpha|+|\beta|}$ according to the definitions that f and g are integrable respectively. Take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then for any tagged partition with mesh $<\delta$, we have

$$
\begin{aligned}
& \left|S(\alpha f+\beta g, P, \vec{c})-\left(\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g\right)\right| \\
& \leq|\alpha|\left|S(f, P, \vec{c})-\int_{a}^{b} f\right|+|\beta|\left|S(g, P, \vec{c})-\int_{a}^{b} g\right| \\
& <\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\alpha f+\beta g$ is integrable.
7. Let y_{1}, \cdots, y_{m} be points such that $f \neq 0$. Let $M=\max _{1 \leq j \leq m} f\left(y_{j}\right)$. Let $\varepsilon>0$ be given. Set $\delta=\frac{\varepsilon}{m M}$, then for any tagged partition with mesh $<\delta$, we have

$$
\left|\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)\right|<\sum_{i=1}^{m} M \delta=\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, $\int_{a}^{b} f=0$.
Take $h=f-g$ and apply the previous result to obtain the conclusion.
8. Note that

$$
L_{f, P_{n}} \leq T_{n}\left(P_{n}, f\right) \leq U_{f, P_{n}}
$$

Since f is integrable, given $\varepsilon>0$ there exists sufficiently large N such that

$$
U_{f, P_{n}}-L_{f, P_{n}}<\varepsilon
$$

Therefore,

$$
T_{n}\left(P_{n}, f\right)-\underline{\int_{a}^{b}} f \leq U_{f, P_{n}}-L_{f, P_{n}}<\varepsilon
$$

and

$$
\overline{\int_{a}^{b}} f-T_{n}\left(P_{n}, f\right) \leq U_{f, P_{n}}-L_{f, P_{n}}<\varepsilon .
$$

This shows that $\left|T_{n}\left(P_{n}, f\right)-\int_{a}^{b} f\right|<\varepsilon$ and hence $\lim _{n \rightarrow \infty} T_{n}\left(P_{n}, f\right)=\int_{a}^{b} f$.
9. By Q7, F^{\prime} is integrable and

$$
\int_{a}^{b} f=\int_{a}^{b} F^{\prime}
$$

We use the same notations as in Q8 except we define

$$
T_{n}\left(P_{n}, F\right)=\sum_{i=1}^{n} F^{\prime}\left(\zeta_{i}\right) \frac{b-a}{n}
$$

where ζ_{i} is the point such that

$$
F\left(x_{i}\right)-F\left(x_{i-1}\right)=F^{\prime}\left(\zeta_{i}\right)\left(x_{i}-x_{i-1}\right) .
$$

Note that $F(b)-F(a)=T_{n}\left(P_{n}, F\right) \forall n \in \mathbb{N}$. Using the same proof as in Q8 allows as to conclude $\lim _{n \rightarrow \infty} T_{n}\left(P_{n}, F\right)=\int_{a}^{b} F^{\prime}$.
10. Let $\varepsilon>0$ be arbitrary. Fix $0 \leq i \leq n-1$, let $y_{1}, y_{2} \in\left[x_{i}, x_{i+1}\right]$ such that

$$
\sup _{x \in\left[x_{i}, x_{i+1}\right]}\left(\frac{1}{f}\right)(x)-\varepsilon<\left(\frac{1}{f}\right)\left(y_{1}\right)
$$

and

$$
\operatorname{in} f_{x \in\left[x_{i}, x_{i+1}\right]}\left(\frac{1}{f}\right)(x)+\varepsilon>\left(\frac{1}{f}\right)\left(y_{2}\right) .
$$

Then,

$$
\begin{aligned}
& \sup _{x \in\left[x_{i}, x_{i+1}\right]}\left(\frac{1}{f}\right)(x)-\inf _{x \in\left[x_{i}, x_{i+1}\right]}\left(\frac{1}{f}\right)(x) \\
& <2 \varepsilon+\left(\left(\frac{1}{f}\right)\left(y_{1}\right)-\left(\frac{1}{f}\right)\left(y_{2}\right)\right) \\
& =2 \varepsilon+\frac{f\left(y_{2}\right)-f\left(y_{1}\right)}{f\left(y_{1}\right) f\left(y_{2}\right)} \\
& \leq 2 \varepsilon+\frac{f\left(y_{2}\right)-f\left(y_{1}\right)}{m^{2}} \\
& \leq 2 \varepsilon+\frac{1}{m^{2}}\left(\sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)-\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)\right) .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we get

$$
\begin{aligned}
U\left(\frac{1}{f}, P\right)-L\left(\frac{1}{f}, P\right) & \leq \frac{1}{m^{2}} \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(\sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)-\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)\right) \\
& =\frac{1}{m^{2}}(U(f, P)-L(f, P)) .
\end{aligned}
$$

Finally, given $\varepsilon>0$, since f is integrable, we can choose $\delta>0$ corresponding to $m^{2} \varepsilon$ in the definition of f. Then, for all partitions with mesh $<\delta$,

$$
U\left(\frac{1}{f}, P\right)-L\left(\frac{1}{f}, P\right) \leq \frac{1}{m^{2}}(U(f, P)-L(f, P))<\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, $\frac{1}{f}$ is integrable.

