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1. If E or F is empty, then the statement is trivial. Therefore, we assume
both E and F are non-empty. Let y ∈ f(E ∪ F ), then

y ∈ f(E ∪ F )⇐⇒ ∃x ∈ E ∪ F such that y = f(x)

⇐⇒ y = f(x) for some (x ∈ E or x ∈ F )

⇐⇒ y ∈ f(E) or y ∈ f(F )

⇐⇒ y ∈ f(E) ∪ f(F ).

Let v ∈ f(E ∩ F ), then

v ∈ f(E ∩ F ) =⇒ ∃u ∈ E ∩ F such that v = f(u)

=⇒ v = f(u) for some (u ∈ E and u ∈ F )

=⇒ v ∈ f(E) and v ∈ f(F )

=⇒ v ∈ f(E) ∩ f(F ).

Note that the reverse side from the third to second line is false in general.

2. First we assume f−1(G ∪H) is non-empty. Let x ∈ f−1(G ∪H), then

x ∈ f−1(G ∪H)⇐⇒ ∃y ∈ G ∪H such that y = f(x)

⇐⇒ ∃(y ∈ G or y ∈ H) such that y = f(x)

⇐⇒ x ∈ f−1(G) or x ∈ f−1(H)

⇐⇒ x ∈ f−1(G) ∪ f−1(H).

If f−1(G ∪H) is empty, then since clearly f−1(G), f−1(H) ⊆ f−1(G ∪H),
f−1(G) and f−1(H) are both empty and the hence the equality holds. Next,
again, we assume f−1(G)∩f−1(H) is non-empty. Let u ∈ f−1(G)∩f−1(H),
then

u ∈ f−1(G) ∩ f−1(H)

=⇒ u ∈ f−1(G) and u ∈ f−1(H)

=⇒ ∃v1 ∈ G and v2 ∈ H such that v1 = f(u) and v2 = f(u).

By the definition of a function, we must have that f(u) is a single element
and hence v1 = v2. Therefore, v1 = v2 ∈ G ∩H and u ∈ f−1(G ∩H). This
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shows that f−1(G) ∩ f−1(H) ⊆ f−1(G ∩ H). Conversely, since we clearly
have

f−1(G ∩H) ⊆ f−1(G), f−1(H),

we get
f−1(G ∩H) ⊆ f−1(G) ∩ f−1(H).

Altogether, f−1(G∩H) = f−1(G)∩f−1(H). Finally, when f−1(G)∩f−1(H)
is empty, since f−1(G ∩H) ⊆ f−1(G) ∩ f−1(H), f−1(G ∩H) must also be
empty and the equality holds.

3. (a) We assume E is non-empty; otherwise, the statement is trivial. Let
u ∈ E, then f(u) ∈ f(E) and so u ∈ f−1(f(E)) by definition. This
shows that E ⊆ f−1(f(E)). Next, we suppose f−1(f(E)) is non-empty
and let x ∈ f−1(f(E)); otherwise, the first part shows that E is also
empty and the result follows. Now,

x ∈ f−1(f(E)) =⇒ ∃y ∈ f(E) such that y = f(x).

Since y ∈ f(E), there exists x′ ∈ E such that f(x) = y = f(x′). The
injectivity of f shows that x = x′ ∈ E. Therefore, if f is injective,
then f−1(f(E)) = E.

To show that the injectivity of f is essential, consider the function
f : R → R such that f(x) = x2. Let E = {x ∈ R : x ≥ 0}, then
E 6= R = f−1(f(E)).

(b) We assume H is non-empty; otherwise, the statement is trivial. We
first assume f(f−1(H)) is non-empty (which is indeed the case if we
assume f is surjective and H is non-empty). Let v ∈ f(f−1(H)), then
v = f(u) for some u ∈ f−1(H), or v = f(u) ∈ H. Thus, f(f−1(H)) ⊆
H in general. Now, let y ∈ H. The surjectivity of f shows that
there exists x ∈ A such that y = f(x), or x ∈ f−1(H). Therefore,
y = f(x) ∈ f(f−1(H)) and we have shown that H ⊆ f(f−1(H)).

To show that the surjectivity is essential, we consider the function
f : R → R such that f(x) = x2. Let H = {x ∈ R : x < 0}, then
H 6= ∅ = f(f−1(H)).

4. Note that because f is an injection, the sightly modified function g :
D(f) → f(A) with g(x) = f(x) for x ∈ D(f) is a bijection and g−1 is
well-defined. Therefore, in the first part of the question, f−1 is actually the
g we have just defined.

(a) It follows from the definition of the inverse ”f−1” as explained at the
beginning.

2



(b) We need to show that f−1 is both injective and surjective.

To see that f−1 is injective, let y1, y2 ∈ B and f−1(y1) = f−1(y2).
Applying the function f on both sides and recalling that f ◦ f−1 is the
identity map, we get y1 = y2. This shows that f−1 is injective. For
surjectivity, let x ∈ A. Considering the identity map f−1 ◦ f , we get

f−1(f(x)) = x.

Clearly, f(x) ∈ B and hence f−1 is surjective.

5. We first show that g◦f is injective. Let x1, x2 ∈ A and g◦f(x1) = g◦f(x2).
The injectivity of g shows that f(x1) = f(x2) and then the injectivity of f
shows that x1 = x2. This shows that g ◦ f is injective.

To see that g ◦ f is surjective, let w ∈ C. The surjectivity of g shows that
there exists y ∈ B such that g(y) = w and then the surjectivity of f shows
that there exists x ∈ A such that f(x) = y, or g ◦ f(x) = w. This shows
that g ◦ f is surjective.

6. (a) Let x1, x2 ∈ A and f(x1) = f(x2). Applying the function g on both
sides, we get g ◦ f(x1) = g ◦ f(x2) and the injectivity of g ◦ f shows
that x1 = x2.

(b) Let w ∈ C. The surjectivity of g ◦ f shows that existence of x ∈ A
such that g ◦ f(x) = w, or g(f(x)) = w. Since f(x) ∈ B = D(g), the
result follows.

7. Note that the fact that f is a bijection follows from the last question. We
first claim that D(f) = R(g) and D(g) = R(f). Now, from the equations,
we see that they are possible only if R(f) ⊆ D(g) and R(g) ⊆ D(f). Also,
from the equations, for x ∈ D(f) and y ∈ D(g), we have

x = g ◦ f(x) = g(f(x)) ∈ R(g) y = f ◦ g(y) = f(g(y)) ∈ R(f).

Hence, our claim holds. Finally, from the commutativity of functions and
the identities f−1 ◦ f(x) = x for x ∈ D(f) and f ◦ g(y) = y for y ∈ D(g) =
R(f), we get

f ◦ g(y) = y

f−1(f ◦ g(y)) = f−1(y)

g(y) = f−1(y).

8. Let P (n) be the statement

1√
1

+
1√
2

+ · · ·+ 1√
n + 1

>
√
n + 1.

3



We will prove the statement by the Mathematical Induction.

For n = 1,
1√
1

+
1√
2
>
√

2.

Hence, the statement is true for n = 1.

Suppose P (k) is true; we need to show that P (k + 1) is true.

For n = k + 1,

1√
1

+
1√
2

+ · · ·+ 1√
k + 1

+
1√
k + 2

>
√
k + 1 +

1√
k + 2

=
√
k + 2− 1√

k + 1 +
√
k + 2

+
1√
k + 2

>
√
k + 2.

Hence, P (k + 1) is true and the statement is true for all n ∈ N by the
principle of the Mathematical Induction.

9. Let S(n) = P (n + n0 − 1), then the assumptions give

The statement S(1) is true;

For all k ≥ 1, the truth of S(k) implies the truth of S(k + 1).

An application of the usual Mathematical Induction on S(n), n ≥ 1 gives
the desired conclusion.

10. We modify the proof for the usual Mathematical Induction.

Suppose S 6= N, then N \ S is non-empty. By the Well-ordering principle,
there exists m ∈ N\S such that m is the least element in N\S. By the first
assumption, m 6= 1. Since m is the minimum of N\S, {k ∈ N : k < m} ⊆ S.
The second assumption gives m ∈ S which is a contradiction. Therefore,
we must have S = N.

11. We modify the proof for the usual Mathematical Induction.

Suppose S 6= N, then N \ S is non-empty. By the Well-ordering principle,
there exists m ∈ N \ S such that m is the least element in N \ S. By the
first assumption, m 6= 2k for any k ∈ N, say, m < 2k′ for some k′ ∈ N.
By the second assumption, we must have m ∈ S which is a contradiction.
Therefore, we must have S = N .
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12. Define the map f : S → N by f(n) = n−2015. It is clear that f is bijection
and the result follows.

13. We first prove the statement under the addition assumption that S ∩ T
is empty. By the definition of countably infinity, there exists bijections
fS : S → N and fT : T → N. Define the function f : S ∪ T → N such that

f(x) =

{
2fS(x) if x ∈ S,

2fT (x) + 1 if x ∈ T.

It is clear that f is a bijection and hence S ∪ T is countably infinite.

In general, consider S ∪ T = (S \ T ) ∪ (S ∩ T ) ∪ (T \ T ). The decomposed
sets are mutually distinct. Since it is also clearly that the union of two
finite sets is finite and the union of a finite set and a countably infinite set
is countably infinite, the result follows.

14. Let f : S → N be a bijection. Since S∩T ⊆ T , S∩T is finite, say, 0 6= |S∩
T | = N ∈ N (the case |S∩T | = 0 is trivial). Write S∩T = {s1, s2, · · · , sN}.
Let M = max f(S ∩ T ). We define the function g : S \ T → N by

g(s) =


f(s) if s ∈ f−1({n ∈ N : n ≤M}),
sk if f−1(s) = M + k, 1 ≤ k ≤ N,

f(s)−N otherwise.

It is easy to see that g is a bijection and hence S \ T is countably infinite.

15. Consider the function g : S → R(f) where g(s) = f(s) for s ∈ S. Then g
is a bijection and hence R(f) is an infinite set. Since R(f) ⊆ T , T is also
an infinite set.

16. Yes, S is an infinite set. Since f is a surjection, for each t ∈ T , f−1({t})
is non-empty. By the axiom of choice, for each t ∈ T , we can pick an st ∈
f−1({t}). Define ST = {st}t∈T , then ST ⊆ S and the function f : ST → T
defined by f(st) = t is a bijection. Hence, ST is an infinite set and so S is
also an infinite set.

17. (a) P(S) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, S} and hence |P(S)| =
23 = 8.

(b) For n = 1, the statement is trivially true.

Suppose the statement is true for n = k, we need to show that the
statement holds for n = k + 1.
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For n = k + 1, pick an element s ∈ S, then |S \ {s}| = k. The
assumption shows that |P(S \ {s})| = 2k. Now,

P(S) = {A ∈ P(S) : s ∈ A} ∪ {A ∈ P(S) : s /∈ A}
= {A ∈ P(S) : s ∈ A} ∪ P(S \ {s})
= {A ∪ {s} : A ∈ P(S \ {s})} ∪ P(S \ {s}).

Note that union is disjoint and hence

|P(S)| = 2|P(S \ {s})| = 2k+1.

The statement holds for n = k + 1 and the desired conclusion follows
from the Mathematical Induction.
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