THE CHINESE UNIVERSITY OF HONG KONG
DEPARTMENT OF MATHEMATICS

MMAT 5000  Analysis I 2015-2016
Suggested Solution to Problem Set 1

1. If E or F is empty, then the statement is trivial. Therefore, we assume
both E and F' are non-empty. Let y € f(E U F), then

y € f(EUF) <= 3z € EUF such that y = f(z)
<= y = f(x) for some (z € For z € F)
=y f(E)orye f(F)
= ye f(E)Uf(F).

Let v € f(ENF), then

ve f(ENF)= Jue€ ENF such that v = f(u)
= v = f(u) for some (u € F and u € F)
= v € f(E) and v € f(F)
= v e f(E)N f(F).

Note that the reverse side from the third to second line is false in general.

2. First we assume f~!(G U H) is non-empty. Let x € f~'(G U H), then

r€ fY(GUH)<+= 3y c GUH such that y = f(x)
<= 3(y € G or y € H) such that y = f(x)
= azcf Y G)orxe fHH)
—re fYG)U f(H).

If f~1(G U H) is empty, then since clearly f~1(G), f~'(H) C f~Y(GU H),
f~H@G) and f~1(H) are both empty and the hence the equality holds. Next,
again, we assume f~'(G)N f~!(H) is non-empty. Let u € f~1(G)Nf~1(H),
then

ue fTHG)NfH(H)
—uc fHG)and u € f1(H)
= Ju; € G and vy € H such that vy = f(u) and vy = f(u).

By the definition of a function, we must have that f(u) is a single element
and hence vy = v,. Therefore, vy = v, € GN H and u € f~1(G N H). This



shows that f~1(G) N f~Y(H) C f~%G N H). Conversely, since we clearly
have

fHGNH) C FHG), fH(H),

we get

fH(GnH)CfHG) N fHH).

Altogether, f~Y(GNH) = f~Y(G)Nf~*(H). Finally, when f~Y(G)Nf~*(H)
is empty, since f~/(GNH) C f~YG) N f~1(H), f~Y(G N H) must also be
empty and the equality holds.

3. (a) We assume F is non-empty; otherwise, the statement is trivial. Let
u € E, then f(u) € f(E) and so u € f~'(f(E)) by definition. This
shows that £ C f~(f(F)). Next, we suppose f~'(f(E)) is non-empty
and let x € f~!(f(E)); otherwise, the first part shows that E is also
empty and the result follows. Now,

z € fTH(f(E)) = Jy € f(E) such that y = f(z).

Since y € f(F), there exists 2’ € E such that f(z) =y = f(2’). The
injectivity of f shows that x = 2’ € E. Therefore, if f is injective,
then f~1(f(F)) = E.

To show that the injectivity of f is essential, consider the function
f : R — R such that f(z) = 2°. Let £ = {z € R : x > 0}, then
E#R=f"'(f(E)).

(b) We assume H is non-empty; otherwise, the statement is trivial. We
first assume f(f~'(H)) is non-empty (which is indeed the case if we
assume f is surjective and H is non-empty). Let v € f(f~1(H)), then
v = f(u) for some v € f~1(H), or v = f(u) € H. Thus, f(f~'(H)) C
H in general. Now, let y € H. The surjectivity of f shows that
there exists € A such that y = f(x), or x € f~'(H). Therefore,
y= f(z) € f(f~1(H)) and we have shown that H C f(f~'(H)).

To show that the surjectivity is essential, we consider the function
f R — R such that f(z) = 2%, Let H = {x € R : x < 0}, then

H#0=f(f~1(H)).

4. Note that because f is an injection, the sightly modified function ¢ :
D(f) — f(A) with g(z) = f(z) for x € D(f) is a bijection and g~ is
well-defined. Therefore, in the first part of the question, f~! is actually the
g we have just defined.

(a) Tt follows from the definition of the inverse ” f~1” as explained at the
beginning.



(b) We need to show that f~! is both injective and surjective.

To see that f~! is injective, let y1,y2 € B and f~ (1) = f~(y2).
Applying the function f on both sides and recalling that fo f~! is the
identity map, we get y; = y». This shows that f~! is injective. For
surjectivity, let x € A. Considering the identity map f~!o f, we get

fH(f@) ==
Clearly, f(x) € B and hence f~1! is surjective.

5. We first show that go f is injective. Let z1,x2 € A and go f(z1) = go f(x2).
The injectivity of g shows that f(z1) = f(x2) and then the injectivity of f
shows that x; = x9. This shows that g o f is injective.

To see that g o f is surjective, let w € C. The surjectivity of g shows that
there exists y € B such that g(y) = w and then the surjectivity of f shows
that there exists © € A such that f(x) =y, or go f(x) = w. This shows
that g o f is surjective.

6. (a) Let z1,29 € A and f(x;) = f(z2). Applying the function g on both
sides, we get g o f(x1) = go f(x2) and the injectivity of g o f shows
that x1 = x5.

(b) Let w € C. The surjectivity of g o f shows that existence of z € A
such that go f(z) = w, or g(f(x)) = w. Since f(z) € B = D(g), the
result follows.

7. Note that the fact that f is a bijection follows from the last question. We
first claim that D(f) = R(g) and D(g) = R(f). Now, from the equations,
we see that they are possible only if R(f) C D(g) and R(g) C D(f). Also,
from the equations, for z € D(f) and y € D(g), we have

r=gof(r)=g(f(r)) € R(g) y=fogly) = flgly) € R(f).

Hence, our claim holds. Finally, from the commutativity of functions and
the identities f~' o f(z) =z for x € D(f) and fog(y) =y for y € D(g) =
R(f), we get

fogly) =y
7 (fogw)=1"y)
g(y) = ().
8. Let P(n) be the statement
1 1 1
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11.

We will prove the statement by the Mathematical Induction.

For n =1,

1 1
ﬁ+ﬁ>\/§.

Hence, the statement is true for n = 1.

Suppose P(k) is true; we need to show that P(k + 1) is true.

Forn =k +1,
1+1+ N 1 N 1
V1oV2 VE+1 VEk+2
1
>vVk+1+
Vk+2
—Vk+2 ! b
VEF1+VE+2 VE+2
> VEk+ 2.

Hence, P(k + 1) is true and the statement is true for all n € N by the
principle of the Mathematical Induction.

Let S(n) = P(n + ny — 1), then the assumptions give
The statement S(1) is true;

For all k£ > 1, the truth of S(k) implies the truth of S(k + 1).

An application of the usual Mathematical Induction on S(n),n > 1 gives
the desired conclusion.

We modify the proof for the usual Mathematical Induction.

Suppose S # N, then N\ S is non-empty. By the Well-ordering principle,
there exists m € N\ S such that m is the least element in N\ S. By the first
assumption, m # 1. Since m is the minimum of N\ S, {k e N: k <m} C S.
The second assumption gives m € S which is a contradiction. Therefore,
we must have S = N.

We modify the proof for the usual Mathematical Induction.

Suppose S # N, then N\ S is non-empty. By the Well-ordering principle,
there exists m € N\ § such that m is the least element in N\ S. By the
first assumption, m # 2% for any k € N, say, m < 2¥ for some k' € N.
By the second assumption, we must have m € S which is a contradiction.
Therefore, we must have S = N.
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Define the map f : S — N by f(n) = n—2015. It is clear that f is bijection
and the result follows.

We first prove the statement under the addition assumption that S N'T
is empty. By the definition of countably infinity, there exists bijections
fs: S = Nand fr:T — N. Define the function f: SUT — N such that

) 2fs(x) if v €S,
fle) = {QfT(x)+1 ifrel.

It is clear that f is a bijection and hence S U T is countably infinite.

In general, consider SUT = (S\T)U(SNT)U (T \T). The decomposed
sets are mutually distinct. Since it is also clearly that the union of two
finite sets is finite and the union of a finite set and a countably infinite set
is countably infinite, the result follows.

Let f: S — N be a bijection. Since SNT C T, SNT is finite, say, 0 # |SN
T| = N € N (the case |[SNT| = 0 is trivial). Write SNT = {sy, 2, -+ , Sy}
Let M = max f(SNT). We define the function g : S\ T — N by

f(s) ifse ff'{neN:n< M},
g(s) =1 s if f74(s)=M+k,1<k<N,
f(s) = N otherwise.

It is easy to see that g is a bijection and hence S\ T' is countably infinite.

Consider the function g : S — R(f) where g(s) = f(s) for s € S. Then ¢
is a bijection and hence R(f) is an infinite set. Since R(f) C T, T is also
an infinite set.

Yes, S is an infinite set. Since f is a surjection, for each ¢t € T, f~1({t})
is non-empty. By the axiom of choice, for each t € T, we can pick an s; €
f7Y({t}). Define Sy = {s;}+er, then Sy C S and the function f: Sy — T
defined by f(s;) =t is a bijection. Hence, St is an infinite set and so S is
also an infinite set.

(a) ;’3(5)82 {0, {13, {2}, {3}, {1, 2}, {2,3},{3,1}, S} and hence |P(S)| =

(b) For n =1, the statement is trivially true.

Suppose the statement is true for n = k, we need to show that the
statement holds for n = k + 1.



For n = k + 1, pick an element s € S, then |S \ {s}| = k. The
assumption shows that [P(S '\ {s})| = 2*. Now,

P(S)={AcP(S):sc AAU{AeP(S):s¢ A}
={AeP(S):se€ AJUP(S\{s})
={AU{s}: A€ P(S\{s}} UP(S\ {s})

Note that union is disjoint and hence
[P(S)] =2[P(S\ {s})] = 2.

The statement holds for n = k + 1 and the desired conclusion follows
from the Mathematical Induction.



