THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT 5000 Analysis I 2015-2016
Suggested Solution to Problem Set 1

1. If E or F is empty, then the statement is trivial. Therefore, we assume both E and F are non-empty. Let $y \in f(E \cup F)$, then

$$
\begin{aligned}
y \in f(E \cup F) & \Longleftrightarrow \exists x \in E \cup F \text { such that } y=f(x) \\
& \Longleftrightarrow y=f(x) \text { for some }(x \in E \text { or } x \in F) \\
& \Longleftrightarrow y \in f(E) \text { or } y \in f(F) \\
& \Longleftrightarrow y \in f(E) \cup f(F) .
\end{aligned}
$$

Let $v \in f(E \cap F)$, then

$$
\begin{aligned}
v \in f(E \cap F) & \Longrightarrow \exists u \in E \cap F \text { such that } v=f(u) \\
& \Longrightarrow v=f(u) \text { for some }(u \in E \text { and } u \in F) \\
& \Longrightarrow v \in f(E) \text { and } v \in f(F) \\
& \Longrightarrow v \in f(E) \cap f(F) .
\end{aligned}
$$

Note that the reverse side from the third to second line is false in general.
2. First we assume $f^{-1}(G \cup H)$ is non-empty. Let $x \in f^{-1}(G \cup H)$, then

$$
\begin{aligned}
x \in f^{-1}(G \cup H) & \Longleftrightarrow \exists y \in G \cup H \text { such that } y=f(x) \\
& \Longleftrightarrow \exists(y \in G \text { or } y \in H) \text { such that } y=f(x) \\
& \Longleftrightarrow x \in f^{-1}(G) \text { or } x \in f^{-1}(H) \\
& \Longleftrightarrow x \in f^{-1}(G) \cup f^{-1}(H) .
\end{aligned}
$$

If $f^{-1}(G \cup H)$ is empty, then since clearly $f^{-1}(G), f^{-1}(H) \subseteq f^{-1}(G \cup H)$, $f^{-1}(G)$ and $f^{-1}(H)$ are both empty and the hence the equality holds. Next, again, we assume $f^{-1}(G) \cap f^{-1}(H)$ is non-empty. Let $u \in f^{-1}(G) \cap f^{-1}(H)$, then

$$
\begin{aligned}
& u \in f^{-1}(G) \cap f^{-1}(H) \\
& \Longrightarrow u \in f^{-1}(G) \text { and } u \in f^{-1}(H) \\
& \Longrightarrow \exists v_{1} \in G \text { and } v_{2} \in H \text { such that } v_{1}=f(u) \text { and } v_{2}=f(u) .
\end{aligned}
$$

By the definition of a function, we must have that $f(u)$ is a single element and hence $v_{1}=v_{2}$. Therefore, $v_{1}=v_{2} \in G \cap H$ and $u \in f^{-1}(G \cap H)$. This
shows that $f^{-1}(G) \cap f^{-1}(H) \subseteq f^{-1}(G \cap H)$. Conversely, since we clearly have

$$
f^{-1}(G \cap H) \subseteq f^{-1}(G), f^{-1}(H)
$$

we get

$$
f^{-1}(G \cap H) \subseteq f^{-1}(G) \cap f^{-1}(H)
$$

Altogether, $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$. Finally, when $f^{-1}(G) \cap f^{-1}(H)$ is empty, since $f^{-1}(G \cap H) \subseteq f^{-1}(G) \cap f^{-1}(H), f^{-1}(G \cap H)$ must also be empty and the equality holds.
3. (a) We assume E is non-empty; otherwise, the statement is trivial. Let $u \in E$, then $f(u) \in f(E)$ and so $u \in f^{-1}(f(E))$ by definition. This shows that $E \subseteq f^{-1}(f(E))$. Next, we suppose $f^{-1}(f(E))$ is non-empty and let $x \in f^{-1}(f(E))$; otherwise, the first part shows that E is also empty and the result follows. Now,

$$
x \in f^{-1}(f(E)) \Longrightarrow \exists y \in f(E) \text { such that } y=f(x)
$$

Since $y \in f(E)$, there exists $x^{\prime} \in E$ such that $f(x)=y=f\left(x^{\prime}\right)$. The injectivity of f shows that $x=x^{\prime} \in E$. Therefore, if f is injective, then $f^{-1}(f(E))=E$.

To show that the injectivity of f is essential, consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$. Let $E=\{x \in \mathbb{R}: x \geq 0\}$, then $E \neq \mathbb{R}=f^{-1}(f(E))$.
(b) We assume H is non-empty; otherwise, the statement is trivial. We first assume $f\left(f^{-1}(H)\right)$ is non-empty (which is indeed the case if we assume f is surjective and H is non-empty). Let $v \in f\left(f^{-1}(H)\right)$, then $v=f(u)$ for some $u \in f^{-1}(H)$, or $v=f(u) \in H$. Thus, $f\left(f^{-1}(H)\right) \subseteq$ H in general. Now, let $y \in H$. The surjectivity of f shows that there exists $x \in A$ such that $y=f(x)$, or $x \in f^{-1}(H)$. Therefore, $y=f(x) \in f\left(f^{-1}(H)\right)$ and we have shown that $H \subseteq f\left(f^{-1}(H)\right)$.

To show that the surjectivity is essential, we consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$. Let $H=\{x \in \mathbb{R}: x<0\}$, then $H \neq \emptyset=f\left(f^{-1}(H)\right)$.
4. Note that because f is an injection, the sightly modified function g : $D(f) \rightarrow f(A)$ with $g(x)=f(x)$ for $x \in D(f)$ is a bijection and g^{-1} is well-defined. Therefore, in the first part of the question, f^{-1} is actually the g we have just defined.
(a) It follows from the definition of the inverse " f^{-1} " as explained at the beginning.
(b) We need to show that f^{-1} is both injective and surjective.

To see that f^{-1} is injective, let $y_{1}, y_{2} \in B$ and $f^{-1}\left(y_{1}\right)=f^{-1}\left(y_{2}\right)$. Applying the function f on both sides and recalling that $f \circ f^{-1}$ is the identity map, we get $y_{1}=y_{2}$. This shows that f^{-1} is injective. For surjectivity, let $x \in A$. Considering the identity map $f^{-1} \circ f$, we get

$$
f^{-1}(f(x))=x
$$

Clearly, $f(x) \in B$ and hence f^{-1} is surjective.
5. We first show that $g \circ f$ is injective. Let $x_{1}, x_{2} \in A$ and $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. The injectivity of g shows that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and then the injectivity of f shows that $x_{1}=x_{2}$. This shows that $g \circ f$ is injective.

To see that $g \circ f$ is surjective, let $w \in C$. The surjectivity of g shows that there exists $y \in B$ such that $g(y)=w$ and then the surjectivity of f shows that there exists $x \in A$ such that $f(x)=y$, or $g \circ f(x)=w$. This shows that $g \circ f$ is surjective.
6. (a) Let $x_{1}, x_{2} \in A$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$. Applying the function g on both sides, we get $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$ and the injectivity of $g \circ f$ shows that $x_{1}=x_{2}$.
(b) Let $w \in C$. The surjectivity of $g \circ f$ shows that existence of $x \in A$ such that $g \circ f(x)=w$, or $g(f(x))=w$. Since $f(x) \in B=D(g)$, the result follows.
7. Note that the fact that f is a bijection follows from the last question. We first claim that $D(f)=R(g)$ and $D(g)=R(f)$. Now, from the equations, we see that they are possible only if $R(f) \subseteq D(g)$ and $R(g) \subseteq D(f)$. Also, from the equations, for $x \in D(f)$ and $y \in D(g)$, we have

$$
x=g \circ f(x)=g(f(x)) \in R(g) \quad y=f \circ g(y)=f(g(y)) \in R(f) .
$$

Hence, our claim holds. Finally, from the commutativity of functions and the identities $f^{-1} \circ f(x)=x$ for $x \in D(f)$ and $f \circ g(y)=y$ for $y \in D(g)=$ $R(f)$, we get

$$
\begin{aligned}
f \circ g(y) & =y \\
f^{-1}(f \circ g(y)) & =f^{-1}(y) \\
g(y) & =f^{-1}(y) .
\end{aligned}
$$

8. Let $P(n)$ be the statement

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n+1}}>\sqrt{n+1}
$$

We will prove the statement by the Mathematical Induction.
For $n=1$,

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}>\sqrt{2} .
$$

Hence, the statement is true for $n=1$.
Suppose $P(k)$ is true; we need to show that $P(k+1)$ is true.
For $n=k+1$,

$$
\begin{aligned}
& \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}} \\
& >\sqrt{k+1}+\frac{1}{\sqrt{k+2}} \\
& =\sqrt{k+2}-\frac{1}{\sqrt{k+1}+\sqrt{k+2}}+\frac{1}{\sqrt{k+2}} \\
& >\sqrt{k+2}
\end{aligned}
$$

Hence, $P(k+1)$ is true and the statement is true for all $n \in \mathbb{N}$ by the principle of the Mathematical Induction.
9. Let $S(n)=P\left(n+n_{0}-1\right)$, then the assumptions give

$$
\text { The statement } S(1) \text { is true; }
$$

For all $k \geq 1$, the truth of $S(k)$ implies the truth of $S(k+1)$.
An application of the usual Mathematical Induction on $S(n), n \geq 1$ gives the desired conclusion.
10. We modify the proof for the usual Mathematical Induction.

Suppose $S \neq \mathbb{N}$, then $\mathbb{N} \backslash S$ is non-empty. By the Well-ordering principle, there exists $m \in \mathbb{N} \backslash S$ such that m is the least element in $\mathbb{N} \backslash S$. By the first assumption, $m \neq 1$. Since m is the minimum of $\mathbb{N} \backslash S,\{k \in \mathbb{N}: k<m\} \subseteq S$. The second assumption gives $m \in S$ which is a contradiction. Therefore, we must have $S=\mathbb{N}$.
11. We modify the proof for the usual Mathematical Induction.

Suppose $S \neq \mathbb{N}$, then $\mathbb{N} \backslash S$ is non-empty. By the Well-ordering principle, there exists $m \in \mathbb{N} \backslash S$ such that m is the least element in $\mathbb{N} \backslash S$. By the first assumption, $m \neq 2^{k}$ for any $k \in \mathbb{N}$, say, $m<2^{k^{\prime}}$ for some $k^{\prime} \in \mathbb{N}$. By the second assumption, we must have $m \in S$ which is a contradiction. Therefore, we must have $S=N$.
12. Define the map $f: S \rightarrow \mathbb{N}$ by $f(n)=n-2015$. It is clear that f is bijection and the result follows.
13. We first prove the statement under the addition assumption that $S \cap T$ is empty. By the definition of countably infinity, there exists bijections $f_{S}: S \rightarrow \mathbb{N}$ and $f_{T}: T \rightarrow \mathbb{N}$. Define the function $f: S \cup T \rightarrow \mathbb{N}$ such that

$$
f(x)= \begin{cases}2 f_{S}(x) & \text { if } x \in S \\ 2 f_{T}(x)+1 & \text { if } x \in T\end{cases}
$$

It is clear that f is a bijection and hence $S \cup T$ is countably infinite.

In general, consider $S \cup T=(S \backslash T) \cup(S \cap T) \cup(T \backslash T)$. The decomposed sets are mutually distinct. Since it is also clearly that the union of two finite sets is finite and the union of a finite set and a countably infinite set is countably infinite, the result follows.
14. Let $f: S \rightarrow \mathbb{N}$ be a bijection. Since $S \cap T \subseteq T, S \cap T$ is finite, say, $0 \neq \mid S \cap$ $T \mid=N \in \mathbb{N}$ (the case $|S \cap T|=0$ is trivial). Write $S \cap T=\left\{s_{1}, s_{2}, \cdots, s_{N}\right\}$. Let $M=\max f(S \cap T)$. We define the function $g: S \backslash T \rightarrow \mathbb{N}$ by

$$
g(s)= \begin{cases}f(s) & \text { if } s \in f^{-1}(\{n \in \mathbb{N}: n \leq M\}) \\ s_{k} & \text { if } f^{-1}(s)=M+k, 1 \leq k \leq N \\ f(s)-N & \text { otherwise }\end{cases}
$$

It is easy to see that g is a bijection and hence $S \backslash T$ is countably infinite.
15. Consider the function $g: S \rightarrow R(f)$ where $g(s)=f(s)$ for $s \in S$. Then g is a bijection and hence $R(f)$ is an infinite set. Since $R(f) \subseteq T, T$ is also an infinite set.
16. Yes, S is an infinite set. Since f is a surjection, for each $t \in T, f^{-1}(\{t\})$ is non-empty. By the axiom of choice, for each $t \in T$, we can pick an $s_{t} \in$ $f^{-1}(\{t\})$. Define $S_{T}=\left\{s_{t}\right\}_{t \in T}$, then $S_{T} \subseteq S$ and the function $f: S_{T} \rightarrow T$ defined by $f\left(s_{t}\right)=t$ is a bijection. Hence, S_{T} is an infinite set and so S is also an infinite set.
17. (a) $\mathcal{P}(S)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\}, S\}$ and hence $|\mathcal{P}(S)|=$ $2^{3}=8$.
(b) For $n=1$, the statement is trivially true.

Suppose the statement is true for $n=k$, we need to show that the statement holds for $n=k+1$.

For $n=k+1$, pick an element $s \in S$, then $|S \backslash\{s\}|=k$. The assumption shows that $|\mathcal{P}(S \backslash\{s\})|=2^{k}$. Now,

$$
\begin{aligned}
\mathcal{P}(S) & =\{A \in \mathcal{P}(S): s \in A\} \cup\{A \in \mathcal{P}(S): s \notin A\} \\
& =\{A \in \mathcal{P}(S): s \in A\} \cup \mathcal{P}(S \backslash\{s\}) \\
& =\{A \cup\{s\}: A \in \mathcal{P}(S \backslash\{s\})\} \cup \mathcal{P}(S \backslash\{s\}) .
\end{aligned}
$$

Note that union is disjoint and hence

$$
|\mathcal{P}(S)|=2|\mathcal{P}(S \backslash\{s\})|=2^{k+1}
$$

The statement holds for $n=k+1$ and the desired conclusion follows from the Mathematical Induction.

