
Lecture 5

3.4 Ergodicity

Definition 3.2 (Ergodicity). A MPS (X,B,m, T ) is said to be ergodic, if B ∈
B with T−1B = B implies m(B) = 1 or m(B) = 0. We call m an ergodic
measure.

In other words, T is ergodic if and only if there is no non-trivial T -invariant
set. The following are some equivalent conditions for ergodicity.

Theorem 3.5. Let (X,B,m, T ) be a MPS, then the following are equivalent.
(i) T is ergodic.
(ii) Let B ∈ B with m(T−1B4B) = 0, then m(B) = 1 or 0.
(iii) Let A ∈ B with m(A) > 0, then m(

⋃∞
i=1 T

−iA) = 1.
(iv) Let A,B ∈ B with m(A) > 0,m(B) > 0, then there exists n ∈ N+ such

that m(T−nA ∩B) > 0.

Proof. (i)⇒(ii). Let B ∈ B with m(T−1B4B) = 0. We will construct a set
B∞ ∈ B with T−1B∞ = B∞ such that m(B∞4B) = 0. Define

B∞ =

∞⋂
k=0

∞⋃
n=k

T−nB,

it’s clear T−1B∞ = B∞. Observe that

T−nB4B ⊆
n−1⋃
k=0

(
T−(k+1)B4T−kB

)
=

n−1⋃
k=0

T−k(T−1B4B),

hencem(T−nB4B) = 0 for any n ∈ N. Since (
⋃∞
n=k T

−nB)4B ⊆
⋃∞
n=k(T−nB4B),

we have m((
⋃∞
n=k T

−nB)4B) = 0 for any k ∈ N. Letting k → ∞, we have
m(B∞4B) = 0 hence m(B∞) = m(B). Since T is ergodic, m(B∞) = 0 or 1,
therefore m(B) = 0 or 1.

(ii)⇒(iii). Let A ∈ B with m(A) > 0. Let C = m(
⋃∞
i=1 T

−iA), then
T−1C = m(

⋃∞
i=2 T

−iA) ⊆ C. Since m(T−1C) = m(C), then m(T−1C4C) =
m(C \ T−1C) = 0. By (ii), m(C) = 0 or m(C) = 1, since m(C) ≥ m(T−1A) =
m(A) > 0, we have m(C) = 1.

(iii)⇒(iv). LetA,B ∈ B withm(A) > 0,m(B) > 0. By (iii), m(
⋃∞
n=1 T

−nA) =
1, hence m(

⋃∞
n=1(T−nA ∩ B)) = m(B) > 0, hence there exists n ∈ N+ such

that m(T−nA ∩B) > 0.
(iv)⇒(i). Let B ∈ B with T−1B = B. Suppose 0 < m(B) < 1, then

both B and X \ B have positive measure. By (iv), there is some n such that
m(T−nB ∩ (X \ B)) > 0, but this is impossible since T−nB = B for any
n ∈ N.
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There are also analogue equivalent conditions for ergodicity by using mea-
surable functions.

Theorem 3.6. Let (X,B,m, T ) be a MPS, then the following are equivalent.
(i) T is ergodic.
(ii) If f is measurable and f(Tx) = f(x) for all x ∈ X, then f is constant

a.e.
(iii) If f is measurable and f(Tx) = f(x) a.e., then f is constant a.e.
(iv) If f ∈ L2(m) and f(Tx) = f(x) for all x ∈ X, then f is constant a.e.
(v) If f ∈ L2(m) and f(Tx) = f(x) a.e., then f is constant a.e.

Proof. For brevity, we prove (i)⇔(iii), the left can be proved in the same manner.
(iii)⇒(i). Let B ∈ B with T−1B = B. Set f = χB , then f(Tx) = f(x)

for all x ∈ X, hence by (iii), f is constant a.e., which implies m(B) = 1 or
m(B) = 0.

(i)⇒(iii). Let f be measurable and f(Tx) = f(x) a.e. By considering real
and imaginary parts, we can assume f is real-valued. For n ∈ N+ and j ∈ Z,
define

An,j = {x ∈ X :
j

n
≤ f(x) <

j + 1

n
},

then for each n ∈ N+, X =
⋃∞
j=−∞An,j is a disjoint union. Since T−1An,j4An,j ⊆

{x : f(Tx) 6= f(x)} and f = f ◦ T a.e., we have m(T−1An,j4An,j) = 0, then
by ergodicity of T , m(An,j) = 0 or m(An,j) = 1. Hence for each n, there ex-
ists a unique j = jn such that m(An,jn) = 1. Now let B =

⋂∞
n=1An,jn , then

m(B) = 1. Since f can differ at most 1
n on each An,jn , f is constant on B,

hence f is constant a.e.

Now under the assumption that T is ergodic, we can reformulate the Birkhoff
ergodic theory as follows.

Theorem 3.7 (Birkhoff Ergodic Theorem). Let (X,B,m) be a ergodic MPS
and f ∈ L1(m). Then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X

fdm a.e. (3.7)

Proof. By Theorem 3.2, we have lim
n→∞

1
n

n−1∑
k=0

f(T kx) = f∗(x) a.e., f∗(Tx) = f(x)

a.e. and
∫
X
f∗dm =

∫
X
fdm. Since T is ergodic, by Theorem 3.6 (iii) we have

f∗ is constant a.e., hence
∫
X
fdm = f∗ a.e.

In the above theorem, the left hand side and right hand side of (3.7) can
be interpreted as the “time average” and the “space average” of f respectively.
Birkhoff ergodic theorem shows that ergodicity is the right condition for “time
average” and “space average” to be equal.

Now let us test the ergodicity of some examples we considered in Lecture 1.
Example 1. (Rotation on the circle).
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Let X = R \ Z and m be the Haar measure on X. For α ∈ (0, 1), define
T : X → X,Tx = x+α(mod1). Then T is ergodic if and only if α is irrational.

Proof. If α = p
q ∈ Q, define f : X → [0, 1) by f(x) = qx(mod1), then f(Tx) =

f(x+α) = q(x+ p
q )( mod 1) = f(x), but clearly f is not constant, hence T is not

ergodic. For the converse implication, let α 6∈ Q. Let g ∈ L2(m) and g(Tx) =

g(x) for all x. Suppose g has Fourier expansion g(x) =
∞∑

n=−∞
ane

2πinx, then

g(Tx) = g(x + α) =
∞∑

n=−∞
ane

2πinαe2πinx. Since g(Tx) = g(x), by comparing

the Fourier coefficients, we have an = ane
2πinα for all n ∈ Z. Since α 6∈ Q, we

have an = 0 for all n 6= 0, hence g = a0 a.e.

Example 2. (Doubling map on the circle).
Let X = R \ Z and m be the Haar measure on X. Let Tx = 2x(mod1).

Then T is ergodic.

Proof. Let f ∈ L2(m) and f(Tx) = f(x) for all x. Let f(x) =
∞∑

n=−∞
ane

2πinx

be the Fourier series of f , then f(Tx) = f(2x) =
∞∑

n=−∞
ane

2πi(2n)x. Since

f(Tx) = f(x), by comparing the Fourier coefficients, we have an = a2n for all
n ∈ Z and an = 0 for any n odd, therefore an = 0 for all n 6= 0, hence f = a0
a.e.

Example 1 can be generalized to rotation on compact group as follows.
Example 3. (Rotation on compact group).
Let K be a compact group. Let a ∈ K. Let m be the normalized Haar

measure on K. Define T : K → K by Tx = ax. Then T is ergodic if and only
if {an : n ∈ Z} is dense in K.

Proof. “⇒”. Notice that T is a homeomorphism and preserves m. Let e be the
identity of K. Let Oe = {an : n ∈ Z} = {Tne : n ∈ Z}. Clearly T−1Oe = Oe.
Since T is ergodic, we have m(Oe) = 0 or m(Oe) = 1. Since K =

⋃
b∈K bOe

and m(bOe) = m(Oe) for any b ∈ K by translation invariant of Haar measure,
we have m(Oe) = 1. We claim Oe = K. Otherwise K \ Oe is open hence has
positive measure, which is a contradiction.

“⇐”. This part needs an application of Fourier analysis on compact groups.
Assume Oe = K. Let f ∈ L2(m) and f ◦ T = f . Let K̂ be the collection of
characters of K, that is every element γ in K̂ is a continuous homomorphism
of K into the unit circle S1. Elements in K̂ are mutually orthogonal in L2(m),
moreover there are uniquely determined complex numbers aγ such that f(x) =∑
γ∈K̂ aγγ(x), since only countable terms in the summation are non-zero, we

can assume f(x) =
∑
i aiγi(x), then f(T (x)) = f(ax) =

∑
i aiγi(a)γi(x). Since

f(Tx) = f(x), by comparing coefficients, we have γi(a) = 1 whenever ai 6= 0,
since γi(a

n) = γi(a)n = 1 and Oe = K, we have γi ≡ 1. By orthogonality of γi,
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only the constant term can be non-zero, hence f is constant a.e. T is ergodic
by Theorem 3.6.

The following theorem gives one more equivalent condition for ergodicity.

Theorem 3.8. Let (X,B,m, T ) be a MPS. Then T is ergodic if and only if ,

lim
n→∞

1

n

n−1∑
k=0

m(T−kA ∩B) = m(A)m(B), (3.8)

for any A,B ∈ B.

Proof. “⇐”. Let B ∈ B with T−1B = B. Put A = B in (3.8), we get
m(B) = m(B)2, hence m(B) = 0 or m(B) = 1, hence T is ergodic.

“⇒”. Let A,B ∈ B. Set f = χA and apply Birkhoff ergodic theorem to f ,
then

lim
n→∞

1

n

n−1∑
k=0

χA(T kx) =

∫
X

χAdm = m(A) a.e.,

multiplying both sides by χB , we obtain

lim
n→∞

1

n

n−1∑
k=0

χA(T kx)χB =

∫
X

χAdm = m(A)χB a.e.,

doing integral on both sides then applying the dominated convergence theorem,
we obtain (3.8).

Usually to check ergodicity, we only need to consider a subset of B that
generates B.

Definition 3.3. A collection G of subsets of X is called a semi-algebra if it
satisfies

(i) ∅ ∈ G .
(ii) If A,B ∈ G , then A ∩B ∈ G .
(iii) If A ∈ G , then there exists a finite collection of sets E1, E2, · · · , Ek such

that X \A =
⋃k
i=1Ei is a disjoint union and Ei ∈ G for each i.

A collection A of subsets of X is called an algebra if it satisfies (i), (ii) and
(iii)′ X \A ∈ B whenever A ∈ B.

For example, let X = [0, 1]. Let G1 = {∅} ∪ {[0, a], (b, c] : 0 < a ≤ 1, 0 < b <
c ≤ 1}, then G1 is a semi-algebra. Let G2 = {∅} ∪ {all subintervals of [0, 1]},
then G2 is a semi-algebra and it generates B(X), the Borel σ-algebra of X, since
B(X) ⊇ B(G2) ⊇ {all open subsets ofX} and B(X) = B({all open subsets ofX}).

We denote the algebra generated by a semi-algebra G by A (G ). Then it’s
easy to see A (G ) = {

⋃n
i=1Ai : Ai ∈ G are disjoint, n ∈ N}. Since we always

assume (X,B,m) is complete, if B is generated by an algebra A , then for any
A ∈ B,

m(A) = inf{
∞∑
i=1

m(Ai) : A ⊆
∞⋃
i=1

Ai, Ai ∈ A for all i},
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see Halmos’s “Measure Theory” for a proof. Using this, we can easily prove the
following approximation lemma.

Lemma 3.9. Let (X,B,m) be a probability space. Suppose B is generated by
an algebra A . Then for each ε > 0 and A ∈ B, there exists A0 ∈ A such that

m(A4A0) < ε.

Proof. Fix ε > 0 and A ∈ B. As we have mentioned,

m(A) = inf{
∞∑
i=1

m(Ai) : A ⊆
∞⋃
i=1

Ai, Ai ∈ A for all i}.

Then there exists a sequence {Ai} ⊂ A , such that A ⊆
⋃∞
i=1Ai and

∞∑
i=1

m(Ai) <

m(A) + ε
2 , hence m(

∞⋃
i=1

Ai) < m(A) + ε
2 . Since m(

∞⋃
i=1

Ai) = lim
n→∞

m(
n⋃
i=1

Ai),

there exist N such that m(
∞⋃
i=1

Ai) < m(
N⋃
i=1

Ai) + ε
2 . Let A0 =

N⋃
i=1

Ai, then

A0 ∈ A . Moreover m(A \ A0) ≤
∞∑
i=1

m(Ai) − m(A0) < ε
2 and m(A0 \ A) ≤

∞∑
i=1

m(Ai)−m(A) < ε
2 , hence m(A4A0) < ε.

Now we can prove a more handy version of Theorem 3.8.

Theorem 3.10. Let (X,B,m, T ) be a MPS. Suppose B is generated by a semi-
algebra G . Then T is ergodic if and only if ,

lim
n→∞

1

n

n−1∑
k=0

m(T−kA ∩B) = m(A)m(B), (3.9)

for any A,B ∈ G .

Proof. Assume (3.9) holds for all elements of G , we prove it also holds for
all elements of B. Since each element in A = A (G ), the algebra generated
by G , is a union of finite disjoint elements of G , it’s easy to check that (3.9)
holds for elements of A . Now fix A,B ∈ B and ε > 0. By Lemma 3.9,
there exist A0, B0 ∈ A such that m(A4A0) < ε and m(B4B0) < ε, hence
|m(A)−m(A0)| < ε and |m(B)−m(B0)| < ε. Notice that

(T−kA ∩B)4(T−kA0 ∩B0) ⊆ (T−kA4T−kA0) ∪ (B4B0),
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we have |m(T−kA ∩B)−m(T−kA0 ∩B0)| < 2ε for any k. Therefore

∣∣ 1
n

n−1∑
k=0

m(T−kA ∩B)−m(A)m(B)
∣∣ ≤ ∣∣ 1

n

n−1∑
k=0

(m(T−kA ∩B)−m(T−kA0 ∩B0))
∣∣

+
∣∣ 1
n

n−1∑
k=0

m(T−kA0 ∩B0)−m(A0)m(B0)
∣∣

+m(A0)|m(B)−m(B0)|+m(B)|m(A)−m(A0)|

≤
∣∣ 1
n

n−1∑
k=0

(m(T−kA0 ∩B0)−m(A0)m(B0)
∣∣+ 4ε.

Letting n→∞, since (3.9) holds for A0, B0, we obtain

lim
n→∞

∣∣ 1
n

n−1∑
k=0

m(T−kA ∩B)−m(A)m(B)
∣∣ ≤ 4ε,

since ε > 0 is arbitrary, we have proved that (3.9) holds for A,B ∈ B. This
completes the proof.
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