Lecture 12

6.3 Measures with maximal entropy
Recall we have proved the variational principle. Let (X,T) be a TDS, then
hiop(T) = sup{h,(T) : j € M(X,T)}.
Definition 6.1. Say p € M(X,T) is a measure with mazimal entropy if
hiop(T) = hu(T).
Proposition 6.2. Let (X,T) be a TDS. Suppose that the entropy map
p = Ry (T)

is upper-semi-continuous on M(X,T). Then there exists at least one measure
in M(X,T) with mazimal entropy.

Proof. By the variational principle, there exists a sequence (u,) C M(X,T)
such that
P (T) = haop(T).
By compactness, there is a subsequence (un,) of () such that u,, — p €
M(X,T). Hence
h,(T) > lim hy,, (T) = hiop(T).

T k—oo

O

Proposition 6.3. Let (X,T) be a subshift over {1,--- k}. Then the entropy
map s upper-semi-continuous.

Proof. Let p € M(X,T). Recall that

n—o0o M

1 n—1 . 1 n—1 )
hu(T) = lim —H,(\/ T7%¢) = inf — ), ( \/ T7%),
=0 =0
where { = {[i] : 1 <14 < k}. Hence for any € > 0, there exists n € N such that
1 n—1 )
EHM( \ T7%) < hu(T) + .
i=0

Write &, = \/?;01 T~, recall it consists of closed and open sets. Suppose

tm € M(X,T) with pi, — u, then

1 1
1 — = — < .
WP—Enoo nHum (&n) nHu(€n> < hu(T) + e
Since hy,,, (T) < 2 H,, (£,), we have limp, o0 hy,, (T') < hy,(T) + €. Since € > 0
is arbitrary, we complete the proof. O
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Example 1. (Full shift over {1,---,k}). Let X = {1,--- Jk}N let 0: ¥ = %
be the left shift. Recall (o) = logk. Let p be the {f,---,}-product
measure on X. Recall h,(c) = logk. Hence p is a measure with maximal
entropy. In fact, p is the unique measure to attain the maximal entropy, we will
show this in the following more general example.

Example 2. (Subshift of finite type over {1,---,k}). Let A be a k x k
0-1 matrix. Assume A is irreducible (that is there exists [ € N, such that
22:1 A® > 0). Define

Ya={(z)2, €X: App,,, = 1foralli>1}.
Let o be the left shift over X 4. Recall that
hiop(0) = log A,

where A is the largest positive eigenvalue of A, which exists by Perron—Frobenius
theorem.

Let (uq,--- ,ug) be a strictly positive left eigenvector of A corresponding to
A, let (v1,---,vr)T be a strictly positive right eigenvector of A of \. Suppose
that Zle w;v; = 1. Define p = {ujvy, - ,uxvg}. Define a k x k matrix
P = (pij)kxk by )
oAby
Pij /\Uz‘ .
Observe that
(i) P is a stochastic matrix.
(i) 7P =
To see (i), for each i € {1,--- , k},
k k k
A, 1
S P P
j=1 j= ! j=

To see (ii), for each j € {1,--- ,k},
= Aijuj _ v
(PP); = Zpipij = Zuﬂiv o ZUiAij = VjUj = Pj.

Let u be the (p, P)-Markov measure, that is

p([iriz - in]) = PiyDivis = Pin_vin

for any admissible word [i1ig - - - ).
Recall that

hu(U) = Z —pipij log pij.

i,J
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By the definitions of p'and P,

hu(o) = Z —pipij log pij

4,J
Vj VU
= ) —wwig-log -
i,j:Aijil v v
1
== Z u;v;(logv; —logv; — log \)
i,j: A =1
1
= —X(Z UiAijUj 10g Vj — Z uiAijUj log Vi — log)\ZuiAijvj)
i.j i,J 2]
= log \.

Hence p is a measure of maximal entropy.
We can see that p attains the maximal entropy in another way. Notice that
for any admissible word [i14 - - - iy],

p(fivia - in]) = PisPiviy = Pin_vin

— U Uiy Vi,
= U, Vi,
)\Uil )\’UZ‘n71
—(n—1
= uilvin)\ ( )

Hence there is some constant ¢ > 0, such that
AT < i - in]) < AT

for any admissible word [i1ig - - - i,,). In general, we call this property the Gibbs

property.
Recall we have Shannon-McMillan-Breiman theorem,
1 n
lim _M = hyu(0), for p-a.e. z,
n—oQ n

where &,(x) is the admissible cylinder where x lies in. By Gibbs property,
the limit on the right hand side equals log A for every x, hence we see again
hu (o) = log A.

The measure p constructed above is called the Parry measure, which was
first discovered by William Parry in 1964, he also showed that p is the unique
measure that attains the maximal entropy.

Lemma 6.5. Let p1,--- ,py >0 with > .- p; = s. Let ay,--- ,a, € R. Then

m m

_ 1
Z(piai —pilogp;) < s(log (Z ") +log g)-

=1 =1
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Proof. Let p; = sgq;, then (q1,- -+, ¢m) is a probability vector. Hence

m

> (pia; — pilogp) =

=1

(sqia; — sq;log sq;)

I

<
Il
—

2, i

(sqia; — sq;log s — sq;log ;)

.
Il
_

m
sD_(giai = gilogg:) - slogs

<.
—

m a;
Sslog(Zqi-e ) —slogs
i=1 E
= s(log (Z e”) —log s).
i=1

O

Lemma 6.6. Let u,n be two probability measures on 3 4. Suppose u 1. n. Then

Tim Y (1) log p(I) = n(I)logn(I) = —cc.
Ieg,

Proof. Since p L n, there exists E C X4 Borel with u(E) = 0 and n(E) = 1.
Given € > 0, there are compact sets K1 C E, Ky C X\ E, such that n(E\K;) < €
and p((X \ E)\ K3) <e.

Let n be so large that diam(¢,) < idist(Ky, K»), then for any I € &,, I
intersects at most one of K7 and K5. Hence

> (1) log u(1) — (1) log (1))

Ieg,

- Z (n(I)log u(I) — n(I)logn(I))
IF{IE('?;@

S D) logu(T) — (1) log (1)),
IﬂIIE(fn:(Z)

Notice that
l—e=nE)—e<nK)< > n)<1,

IE&’VL
INK,1#£0
and
0=pn(K) < Y wI)<p(X\E)\K;) <e
Iegn
INK1#£0
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Applying the above lemma,

Y () log p(I) —n(I)log (1))

Ieg,
INK1#£0
< (Y nm)[log( > D) —log( > )]
Iegn Ieg, Ieén
IﬁKlyé@ Il"lKl;ﬁ@ IﬂKl#w
< log

— €

Also we have estimate

> ((I)log (1) = n(I)logn(I))

Ic€,

INK1=0

< (). nM)[log( > wI) —log( > )]
Irfze{f”:w IﬂIIE(En:VJ mlle(fn;—@

< —sl .
< Orggécl( slog s)

Combining these estimates together, we have

> (1) log u(I) = n(I)logn(I)) < log
Ieg,

- + Orélsa%(l(—s log s).

Since the right hand side tends to —oo as € — 0, we complete the proof. O
We will need the following property of ergodic measures.

Proposition 6.4. Let u,n € M(X,T) be two ergodic measures. If u # n, then
wLln.

Proof. By Lebesgue decomposition theorem, there exist two unique probability
measures 1 and po and a unique number r € [0, 1], such that

p=rpr+ (1 —r)us,

where iy < nand pe L 7.
We first show that uq, e € M(X,T). Notice that

p=poT P =rpoT 14 (1 —r)ugoTH,

and
proTt<noT™ =n, ppoT ™ LnoT ! =0

By uniqueness of the decomposition, we have gy o T~! = py and po 0o T7! = po,
namely pq, pue € M(X,T).
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Next we show we must have r = 0, which shows g L 7. Since p is ergodic,
i is an extreme point of M (X,T), we have r = 0 or r = 1. If r = 1, we have
@ << n. In this situation, we consider decomposition

n=pm + (1 —p)ne, with ny < p,m2 L p,p € [0,1].

Again we have p=0or p=1. If p =0, we have n L p and p < 1, which forces
w = 0, a contradiction. If p = 1, we have n < p and p < n, which leads to
1 =1, also a contradiction. Hence we have r =0 and p L 7. O

Now we can give the proof that the Parry measure is the unique measure
that attains the maximal entropy.

Proof of p is the unique measure with mazimal entropy. Let u be the Parry mea-
sure on Y 4. Notice that p is ergodic since A is irreducible. Recall we have

AT < w(I) <eA™",

for any admissible word I € &,.
Now assume that 7 is another ergodic measure with entropy log A. By propo-
sition above, we have p L 7. Since

1 1
log X = inf — H,,(&,) = inf — S —n(I) log n(I),
og A = inf —Hy (&) = in n%: n(I)logn(I)

we have for any n,

> —n(I)logn(I) > nlog \.
Ieg,

By the Gibbs property of p,

Z n(I)log u(I) >log (c7'A™™) = —nlog A — logec.
1€,

Taking the summation,

> (n(I)log u(I) — n(I)logn(I)) > —logc,
ice,

contradicting Lemma 6.6. The proof is completed.
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