Suggested Solution to Assignment 7

Exercise 7.1

1. Suppose there exists one non-constant harmonic function u in D, which attains its maximum M at $\mathbf{x}_{0} \in D$. Then by the mean value property, we have

$$
u\left(\mathbf{x}_{0}\right)=\frac{1}{\left|B\left(\mathbf{x}_{0}, r\right)\right|} \iint_{B\left(\mathbf{x}_{0}, r\right)} u d S
$$

for all $\overline{B\left(\mathbf{x}_{0}, r\right)} \subset D$. Thus $u(\mathbf{x})=M$ for all $\mathbf{x} \in \overline{B\left(\mathbf{x}_{0}, r\right)} \subset D$ since u is continuous and M is its maximum.

Now since u is not a constant, there exists $\mathbf{x}_{1} \in D$ such that $u\left(\mathbf{x}_{1}\right) \neq u\left(\mathbf{x}_{0}\right)$. Since D is a region, we can find a continuous a curve $\gamma(t) \subset D(0 \leq t \leq 1)$ such that $\gamma(0)=\mathbf{x}_{0}$ and $\gamma(1)=\mathbf{x}_{1}$. Set $E:=\{0 \leq t \leq 1 \mid u(\gamma(t))=M\}$, then E is closed since u and γ are both continuous. Let $t_{0} \in E$, then by the above result, $u(\mathbf{x})=M$ for all $\mathbf{x} \in \overline{B\left(\gamma\left(t_{0}\right), r\right)} \subset D$. So E is open. Hence, $E=[0,1]$ since $E \neq \emptyset$ and $[0,1]$ is connected. But this contradicts to $u\left(\mathbf{x}_{1}\right) \neq u\left(\mathbf{x}_{0}\right)$ and then we complete the proof.
2. Suppose u_{1} and u_{2} are solutions of the problem. Then $u=u_{1}-u_{2}$ satisfies

$$
\Delta u=0 \text { in } D, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial D
$$

Thus, by the Green's first identity for $v=u$, we have

$$
\iint_{\partial D} u \cdot \frac{\partial u}{\partial n} d S=\iiint_{D}|\nabla u|^{2} d \mathbf{x}+\iiint_{D} u \Delta u d \mathbf{x}
$$

Hence,

$$
\iiint_{D}|\nabla u|^{2} d \mathbf{x}=0
$$

Therefore, $\nabla u \equiv 0$ and then $u(x)$ is a constant.
3. Suppose u_{1} and u_{2} are solutions of the problem. Then $u=u_{1}-u_{2}$ satisfies

$$
\Delta u=0 \text { in } D, \quad \frac{\partial u}{\partial n}+a u=0 \text { on } \partial D
$$

Thus, by the Green's first identity for $v=u$, we have

$$
\iint_{\partial D} u \cdot \frac{\partial u}{\partial n} d S=\iiint_{D}|\nabla u|^{2} d \mathbf{x}+\iiint_{D} u \Delta u d \mathbf{x}
$$

Hence,

$$
\iiint_{D}|\nabla u|^{2} d \mathbf{x}=-\iint_{\partial D} a u^{2} d S
$$

Since $a(\mathbf{x})>0, \nabla u \equiv 0$ and then $u(x)$ is a constant C. So by the Robin boundary conditions, we have $C a(\mathbf{x})=0$. This shows that $C=0$ and $u \equiv 0$.
4. Suppose u_{1} and u_{2} are solutions of the problem. Then $u=u_{1}-u_{2}$ satisfies

$$
u_{t}-k \Delta u=0 \text { in } D \times(0, \infty), u=0 \text { on } \partial D \times(0, \infty), u(x, 0)=0 \text { in } D
$$

Thus, by the Green's first identity for $v=u$, we have

$$
\iint_{\partial D} u \cdot \frac{\partial u}{\partial n} d S=\iiint_{D}|\nabla u|^{2} d \mathbf{x}+\iiint_{D} u \Delta u d \mathbf{x}
$$

Therefore, by the diffusion equation

$$
\begin{aligned}
0 & =\iiint_{D}|\nabla u|^{2} d \mathbf{x}+\frac{1}{k} \iiint_{D} u u_{t} d \mathbf{x} \\
& =\iiint_{D}|\nabla u|^{2} d \mathbf{x}+\frac{1}{2 k} \frac{d}{d t} \iiint_{D} u^{2} d \mathbf{x} .
\end{aligned}
$$

Define $E(t):=\iiint_{D} u^{2} d \mathbf{x}$, then the above equality implies $\frac{d}{d t} E(t) \leq 0$. Note that $E(0)=0$ and $E(t) \geq 0$, we have $E(t) \equiv 0$. So we obtain $u \equiv 0$ and the uniqueness for the diffusion equation with Dirichlet boundary conditions is proved.
5. Suppose $u(\mathbf{x})$ minimizes the energy. Let $v(\mathbf{x})$ be any function and ϵ be any constant, then

$$
E[u] \leq E[u+\epsilon v]=E[u]+\epsilon \iiint_{D} \nabla u \cdot \nabla v d \mathbf{x}-\epsilon \iint_{\partial D} h v d S+\epsilon^{2} \iiint_{D}|\nabla v|^{2} d \mathbf{x} .
$$

Hence, by calculus

$$
\iiint_{D} \nabla u \cdot \nabla v d \mathbf{x}-\iint_{\partial D} h v d S=0
$$

for any function v. By Green's first identity,

$$
-\iiint_{D} \nabla u \cdot v d \mathbf{x}+\iint_{\partial D} v \cdot \frac{\partial u}{\partial n} d S-\iint_{\partial D} h v d S=0
$$

Noting v is an arbitrary function, let v vanish on ∂D firstly and then the above equality implies $-\Delta u=0$ in D. So the above equality changes to

$$
\iint_{\partial D} v \cdot \frac{\partial u}{\partial n} d S-\iint_{\partial D} h v d S=0 .
$$

Since v is arbitrary, $\frac{\partial u}{\partial n}=h$ on ∂D and then $u(\mathbf{x})$ is a solution of the following Neumann problem

$$
-\Delta u=0 \text { in } D, \quad \frac{\partial u}{\partial n}=h \text { on bdy } D .
$$

Note that the Neumann problem has a unique solution up to constant and the functional $E[w]$ does not change if a constatn is added to w, thus it is the only funtion that can minimize the energy up to a constant.
Note that here we assume functions u, v and the domain D are smooth enough, at least under which the Green's first identity can be hold.
6. (a) Suppose u_{1} and u_{2} are solutions of the problem. Then $u=u_{1}-u_{2}$ tends to zero at infinity, and is constant on ∂A and constant on ∂B, and satisfies

$$
\iint_{\partial A} \frac{\partial u}{\partial n} d S=0=\iint_{\partial B} \frac{\partial u}{\partial n} d S
$$

Suppose that $u \neq 0$, then without loss of generality, we assume that there exists $\mathbf{x}_{0} \in \bar{D}$ such that $u\left(\mathbf{x}_{0}\right)>0$. Since u tends to zero at infinity, so there exists $R \gg 1$ such that $u(\mathbf{x}) \leq \frac{u\left(\mathbf{x}_{0}\right)}{2}$ if $|\mathbf{x}| \geq R$. Then u is a harmonic function in $D \cap B(\mathbf{0}, R)$ and $\max _{\partial B(\mathbf{0}, R)} u \leq \frac{u\left(\mathbf{x}_{0}\right)}{2} \leq u\left(\mathbf{x}_{0}\right) \leq \max _{D \cap B(\mathbf{0}, R)} u$. Thus, the maximum is attained on ∂A or ∂B by the Maximum Principle. WOLG, we assume that u attain its maximum on ∂A and then by any point of ∂A is a maximum point since u is constant on ∂A. Hence, by the Hopf maximum principle, $\partial u / \partial n>0$ on ∂A, but this contradicts to the condition

$$
\iint_{\partial A} \frac{\partial u}{\partial n} d S=0
$$

Therefore, $u \equiv 0$ and then the solution is unique.
(b) If not, then $u(\mathbf{x})$ have a negative minimum. As above, by the Minimum Principle, we get that u attains its minimum on ∂A or ∂B. WOLG, we assume that u attains its minimum on ∂A, then $\frac{\partial u}{\partial n}<0$ by the Hopf principle since u is not a constant. But this contradicts to $\iint_{\partial A} \frac{\partial u}{\partial n} d S=Q>0$. So $u \geq 0$ in D,
(c) Suppose that there exists $\mathbf{x}_{0} \in D$ such that $u\left(\mathbf{x}_{0}\right)=0$. Then by (b) and the Strong Minimum Principle, u is a constant in D. But this contradicts to $\iint_{\partial A} \frac{\partial u}{\partial n} d S=Q>0$. So $u>0$ in D. (Actually, we can prove that $u>0$ on ∂A and ∂B by the Hopf principle again as in (b)).
7. (Extra Problem 1) Suppose u_{1} and u_{2} are solutions of the problem. Then

$$
\begin{gathered}
\triangle\left(u_{1}-u_{2}\right)=u_{1}^{3}-u_{2}^{3}=\left(u_{1}-u_{2}\right)\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right) \text { in } D \\
\frac{\partial\left(u_{1}-u_{2}\right)}{\partial n}+a(x)\left(u_{1}-u_{2}\right)=0 \text { on } \partial D
\end{gathered}
$$

Thus,

$$
\begin{aligned}
0 \leq \int_{D}\left(u_{1}-u_{2}\right)^{2}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right) & =\int_{D}\left(u_{1}-u_{2}\right) \triangle\left(u_{1}-u_{2}\right) \\
& =\int_{\partial D}\left(u_{1}-u_{2}\right) \frac{\partial\left(u_{1}-u_{2}\right)}{\partial n}-\int_{D}\left|D u_{1}-D u_{2}\right|^{2} \\
& =-\int_{\partial D} a(x)\left(u_{1}-u_{2}\right)^{2}-\int_{D}\left|D u_{1}-D u_{2}\right|^{2} \leq 0
\end{aligned}
$$

since $a(x) \geq 0 . \Rightarrow \int_{D}\left(u_{1}-u_{2}\right)^{2}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right)=0 \Rightarrow u_{1}=u_{2}$ in D
8. (Extra Problem 2) (a)

$$
E[u]:=\int_{D} \frac{1}{2}\left(|D u|^{2}+b(x) u^{2}\right)+f(x) u
$$

(b)If u is a solution, then $\forall v \in C_{0}^{2}(D), 0=\int_{D}-v \Delta u+b(x) u v+f(x) v=\int_{D} D u \cdot D v+b(x) u v+f(x) v$ $\Rightarrow \forall w \in C^{2}(D), w=h$ on ∂D, take $v=w-u$,

$$
\begin{aligned}
E[w] & =\int_{D} \frac{1}{2}|D v|^{2}+\frac{1}{2}|D u|^{2}+D v \cdot D u+\frac{1}{2} b(x) v^{2}+\frac{1}{2} b(x) u^{2}+b(x) u v+f(x) v+f(x) u \\
& =\int_{D} \frac{1}{2}|D v|^{2}+\frac{1}{2} b(x) v^{2}+E[u] \\
& \geq E[u]
\end{aligned}
$$

since $b(x) \geq 0$.
Conversely, $\forall v \in C_{0}^{2}(D), \forall t \in \mathbb{R}, w:=u+t v \in C^{2}, w=u=h$ on ∂D

$$
\begin{gathered}
\Rightarrow 0=\left.\frac{d}{d t} E[u+t v]\right|_{t=0}=\int_{D} D u \cdot D v+b(x) u v+f(x) v \\
\Rightarrow \int_{D} v(-\triangle u+b(x) u+f(x))=0, \forall v \in C_{0}^{2}(D) \\
\Rightarrow-\triangle u+b(x) u+f(x)=0 \text { in } D
\end{gathered}
$$

Exercise 7.2

2. Let $r=|\mathbf{x}|$ and $D_{\epsilon}:=\{x \mid \epsilon<r<R\}$, where R is large enough such that $\phi=0$ outside $r<R / 2$. Using the Green's second identity,

$$
\begin{aligned}
& \iiint_{D_{\epsilon}} \frac{1}{|\mathbf{x}|} \Delta \phi(\mathbf{x}) d \mathbf{x}=\iint_{\partial D_{\epsilon}}\left[\frac{1}{|\mathbf{x}|} \cdot \frac{\partial \phi}{\partial n}-\phi \cdot \frac{\partial}{\partial n} \frac{1}{\mathbf{x}}\right] d S \\
= & \iint_{|\mathbf{x}|=R}\left[\frac{1}{|\mathbf{x}|} \cdot \frac{\partial \phi}{\partial n}-\phi \cdot \frac{\partial}{\partial n} \frac{1}{\mathbf{x}}\right] d S+\iint_{|\mathbf{x}|=\epsilon}\left[\frac{1}{|\mathbf{x}|} \cdot \frac{\partial \phi}{\partial n}-\phi \cdot \frac{\partial}{\partial n} \frac{1}{\mathbf{x}}\right] d S \\
= & -\iint_{|\mathbf{x}|=\epsilon}\left[\frac{1}{\epsilon} \cdot \frac{\partial \phi}{\partial r}+\phi \cdot \frac{1}{c^{2}}\right] d S=-4 \pi \bar{\phi}-4 \pi \epsilon \frac{\frac{\phi}{\partial r}}{},
\end{aligned}
$$

where $\bar{\phi}$ denotes the average value of ϕ on the sphere $\{r=\epsilon\}$, and $\frac{\overline{\partial \phi}}{\partial r}$ denotes the average value of $\frac{\partial \phi}{\partial r}$ on this sphere. Since ϕ is continuous and $\frac{\partial \phi}{\partial r}$ is bounded,

$$
-4 \pi \bar{\phi}-4 \pi \epsilon \frac{\overline{\partial \phi}}{\partial r} \rightarrow-4 \pi \phi(\mathbf{0}) \quad \text { as } \epsilon \rightarrow 0
$$

Hence,

$$
\phi(\mathbf{0})=-\iiint_{|\mathbf{x}|<R} \frac{1}{|\mathbf{x}|} \Delta \phi(\mathbf{x}) \frac{d \mathbf{x}}{4 \pi} .
$$

3. Choosing $D=B\left(\mathbf{x}_{0}, R\right)$ in the representation formula (1) and using the divergence theorem,

$$
\begin{aligned}
u\left(\mathbf{x}_{0}\right) & =\iint_{\partial B\left(\mathbf{x}_{0}, R\right)}\left[-u(\mathbf{x}) \cdot \frac{\partial}{\partial n}\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}\right)+\frac{1}{\left|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right|} \cdot \frac{\partial u}{\partial n}\right] \frac{d S}{4 \pi} \\
& =\iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R}\left[\frac{1}{R^{2}} u(\mathbf{x})+\frac{1}{R} \frac{\partial u}{\partial n}\right] \frac{d S}{4 \pi} \\
& =\frac{1}{4 \pi R^{2}} \iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u d S+\frac{1}{4 \pi R} \iiint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<R} \Delta u d \mathbf{x} \\
& =\frac{1}{4 \pi R^{2}} \iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u d S .
\end{aligned}
$$

4. (Extra Problem) $\forall \phi(x) \in C_{c}^{2}\left(\mathbb{R}^{2}\right)$, we need to show that

$$
\phi(0)=\iint_{\mathbb{R}^{2}} \log |x| \triangle \phi(x) \frac{d x}{2 \pi}
$$

proof: Let $r=|x|$ and $D_{\varepsilon}:=x: \varepsilon<r<R$, where R is large enough such that $\phi=0$ if $r \geq R / 2$. Using the Green's identity,

$$
\begin{aligned}
\iint_{D_{\varepsilon}} \log |x| \Delta \phi(x) d x & =\int_{\partial D_{\varepsilon}}\left[\log |x| \frac{\partial \phi}{\partial n}-\phi \frac{\partial}{\partial} \log |x|\right] d S \\
& =\int_{|x|=\varepsilon}\left[\log |x| \frac{\partial \phi}{\partial n}-\phi \frac{\partial}{\partial} \log |x|\right] d S \\
& =-\int_{|x|=\varepsilon}\left[\log \varepsilon \frac{\partial \phi}{\partial r}-\phi \frac{1}{\varepsilon}\right] d S \\
& =2 \pi \bar{\phi}-2 \pi \varepsilon \log \varepsilon \frac{\partial \phi}{\partial r}
\end{aligned}
$$

where $\bar{\phi}, \frac{\partial \phi}{\partial r}$ denote the average value of $\phi, \frac{\partial \phi}{\partial r}$ on the sphere $|x|=\varepsilon$. Since ϕ is continuous and $\frac{\partial \phi}{\partial r}$ is bounded,

$$
2 \pi \bar{\phi}-2 \pi \varepsilon \log \varepsilon \frac{\overline{\partial \phi}}{\partial r} \rightarrow 2 \pi \phi(0), \text { as } \varepsilon \rightarrow 0
$$

Exercise 7.3

1. Suppose G_{1} and G_{2} both are the Green's functions for the operator $-\Delta$ and the domain D at the point $\mathbf{x}_{0} \in d$. By (i) and (iii), we obtain that $G_{1}(\mathbf{x})+\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|}$ and $G_{2}(\mathbf{x})+\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|}$ both are harmonic functions in D. Thus, by (ii) and the uniqueness theorem of harmonic function, we have

$$
G_{1}(\mathrm{x})+\frac{1}{4 \pi\left|\mathrm{x}-\mathrm{x}_{0}\right|}=G_{2}(\mathrm{x})+\frac{1}{4 \pi\left|\mathrm{x}-\mathrm{x}_{0}\right|}
$$

that is, the Green's function is unique.
3. In the textbook,

$$
A_{\epsilon}=\iint_{|\mathbf{x}-\mathbf{a}|=\epsilon}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) d S
$$

where $u(\mathbf{x})=G(\mathbf{x}, \mathbf{a})$ and $v(\mathbf{x})=G(\mathbf{x}, \mathbf{b})$. Note that

$$
u(\mathbf{x})=G(\mathbf{x}, \mathbf{a})=-\frac{1}{4 \pi|\mathbf{x}-\mathbf{a}|}+H(\mathbf{x}, \mathbf{a})
$$

, where $H(\mathbf{x}, \mathbf{a})$ is a harmonic function throughout the domain D. What's more, $v(\mathbf{x})=G(\mathbf{x}, \mathbf{b})$ is a harmonic function in $\{|\mathbf{x}-\mathbf{a}|<\epsilon\}$, then we have

$$
\begin{aligned}
A_{\epsilon}= & \iint_{|\mathbf{x}-\mathbf{a}|=\epsilon}\left[\left(-\frac{1}{4 \pi|\mathbf{x}-\mathbf{a}|}+H(\mathbf{x}, \mathbf{a})\right) \frac{\partial v}{\partial n}-v \frac{\partial}{\partial n}\left(-\frac{1}{4 \pi|\mathbf{x}-\mathbf{a}|}+H(\mathbf{x}, \mathbf{a})\right)\right] d S \\
= & \iint_{|\mathbf{x}-\mathbf{a}|=\epsilon}\left[-\frac{1}{4 \pi|\mathbf{x}-\mathbf{a}|} \frac{\partial v}{\partial n}+v \frac{\partial}{\partial n}\left(\frac{1}{4 \pi|\mathbf{x}-\mathbf{a}|}\right)\right] d S \\
& +\iint_{|\mathbf{x}-\mathbf{a}|=\epsilon}\left[H(\mathbf{x}, \mathbf{a}) \frac{\partial v}{\partial n}-v \frac{\partial}{\partial n} H(\mathbf{x}, \mathbf{a})\right] d S \\
= & v(\mathbf{a})-\iiint_{|\mathbf{x}-\mathbf{a}|<\epsilon}[H(\mathbf{x}, \mathbf{a}) \Delta v-v \Delta H(\mathbf{x}, \mathbf{a})] d \mathbf{x}=v(\mathbf{a})
\end{aligned}
$$

Here we use the representation formula (7.2.1) and $\frac{\partial}{\partial n}=-\frac{\partial}{\partial r}$. So $\lim _{\epsilon \rightarrow 0} A_{\epsilon}=v(\mathbf{a})=G(\mathbf{a}, \mathbf{b})$.

Exercise 7.4

1. By (i), we know that $G(x)$ is a linear function in $\left[0, x_{0}\right]$ and $\left[x_{0}, l\right]$. Since (ii) and $G(x)$ is continuous at x_{0}, we have

$$
G(x)= \begin{cases}k x, & 0<x \leq x_{0} \\ \frac{k x_{0}}{x_{0}-l}(x-l), & x_{0}<x<l\end{cases}
$$

Hence, $G(x)+\frac{1}{2}\left|x-x_{0}\right|$ is harmonic at x_{0} if and only if

$$
\left.\left(G(x)+\frac{1}{2}\left|x-x_{0}\right|\right)^{\prime}\right|_{x_{0}^{-}}=\left.\left(G(x)+\frac{1}{2}\left|x-x_{0}\right|\right)^{\prime}\right|_{x_{0}^{+}},
$$

if and only if

$$
k=\frac{l-x_{0}}{l} .
$$

So the one-dimensional Green's function for the interval $(0, l)$ at the point $x_{0} \in(0, l)$ is

$$
G(x)= \begin{cases}\frac{l-x_{0}}{l} x, & 0<x \leq x_{0} \\ -\frac{x_{0}}{l}(x-l), & x_{0}<x<l\end{cases}
$$

2. Assume that $h(x, y)$ is a continuous function that vanished outside $\left\{(x, y) \mid x^{2}+y^{2} \leq R^{2}\right\}$ and $|h(x, y)| \leq M$. Then by the formula (3), we have

$$
\begin{aligned}
\left|u\left(x_{0}, y_{0}, z_{0}\right)\right| & \leq \frac{M}{2 \pi} \iint_{\left\{(x, y) \mid x^{2}+y^{2} \leq R^{2}\right\}}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+z_{0}^{2}\right]^{-\frac{3}{2}} d x d y \\
& \leq \frac{M R^{2}}{2\left(\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}-R\right)^{3}}, \quad \text { when } \sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}>R
\end{aligned}
$$

Therefore, u satisfies the condition at infinity:

$$
u(\mathbf{x}) \rightarrow 0, \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

3. From (3), we have

$$
\begin{aligned}
u\left(x_{0}, y_{0}, z_{0}\right) & =\frac{z_{0}}{2 \pi} \iint\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+z_{0}^{2}\right]^{-\frac{3}{2}} h(x, y) d x d y \\
& =\frac{z_{0}}{2 \pi} \iint\left[x^{2}+y^{2}+z_{0}^{2}\right]^{-\frac{3}{2}} h\left(x+x_{0}, y+y_{0}\right) d x d y
\end{aligned}
$$

Now we change variables such that $x=z_{0} s \cos \theta, y=z_{0} s \sin \theta$. Then

$$
\begin{aligned}
u\left(x_{0}, y_{0}, z_{0}\right) & =\frac{z_{0}}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty}\left(z_{0}^{2} s^{2}+z_{0}^{2}\right)^{-\frac{3}{2}} h\left(z_{0} s \cos \theta+x_{0}, z_{0} s \sin \theta+y_{0}\right) z_{0}^{2} s d s d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} s\left(s^{2}+1\right)^{-\frac{3}{2}} h\left(z_{0} s \cos \theta+x_{0}, z_{0} s \sin \theta+y_{0}\right) d s d \theta
\end{aligned}
$$

Since

$$
\begin{gathered}
\int_{0}^{\infty} s\left(s^{2}+1\right)^{-\frac{3}{2}} d s=-\left.\left(s^{2}+1\right)^{-\frac{3}{2}}\right|_{0} ^{\infty}=1, \\
\lim _{z_{0} \rightarrow 0} u\left(x_{0}, y_{0}, z_{0}\right)=h\left(x_{0}, y_{0}\right)
\end{gathered}
$$

if the limit can be taken in the integration, for example, when $h(x, y)$ is bounded.
5. Here is one of suggested explains.

Since the half-plane $\{y>0\}$ is not bounded, this only means that the solution is not unique under the (uncompleted) boundary condition or it is not a well-posed problem. But generally it will be a well-posed problem if we add another boundary condition, such as

$$
u(\mathbf{x}) \rightarrow 0, \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

6. (a) Using the method of reflection, as in the dimension three, we have

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}\right|-\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}^{*}\right|,
$$

where $\mathbf{x}=(x, y), \mathbf{x}_{0}=\left(x_{0}, y_{0}\right), \mathbf{x}_{0}^{*}=\left(x_{0},-y_{0}\right)$.
(b) Since

$$
\begin{aligned}
-\frac{\partial G}{\partial y} & =\frac{y+y_{0}}{2 \pi\left[\left(x-x_{0}\right)^{2}+\left(y+y_{0}\right)^{2}\right]}-\frac{y-y_{0}}{2 \pi\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]} \\
& =\frac{y_{0}}{\pi\left[\left(x-x_{0}\right)^{2}+y_{0}^{2}\right]}
\end{aligned}
$$

on $y=0$, the solution is given by

$$
u\left(x_{0}, y_{0}\right)=\frac{y_{0}}{\pi} \int \frac{h(x)}{\left(x-x_{0}\right)^{2}+y_{0}^{2}} d x
$$

(c) By (b), we have

$$
u\left(x_{0}, y_{0}\right)=\frac{y_{0}}{\pi} \int \frac{h(x)}{\left(x-x_{0}\right)^{2}+y_{0}^{2}} d x=\frac{1}{\pi} \int \frac{1}{x^{2}+1} d x=1 .
$$

7. (a) If $u(x, y)=f\left(\frac{x}{y}\right)$, then

$$
\begin{aligned}
u_{x} & =\frac{1}{y} f^{\prime}\left(\frac{x}{y}\right), u_{y}=-\frac{x}{y^{2}} f^{\prime}\left(\frac{x}{y}\right) \\
u_{x x}+u_{y y} & =\frac{1}{y^{2}} f^{\prime \prime}\left(\frac{x}{y}\right)+\frac{x^{2}}{y^{4}} f^{\prime \prime}\left(\frac{x}{y}\right)+\frac{2 x}{y^{3}} f^{\prime}\left(\frac{x}{y}\right) .
\end{aligned}
$$

So f has to satisfy the following ODE

$$
\begin{gathered}
\left(1+t^{2}\right) f^{\prime \prime}(t)+2 t f^{\prime}(t)=0 \\
f(t)=\int_{0}^{t} \frac{a}{1+s^{2}} d s+b=a \arctan t+b
\end{gathered}
$$

where a, b are contants.
(b)

$$
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}=\frac{1}{y} f^{\prime}\left(\frac{x}{y}\right) \frac{x}{r}-\frac{x}{y^{2}} f^{\prime}\left(\frac{x}{y}\right) \frac{y}{r}=0 .
$$

(c) Using the polar coordinate,

$$
v(r, \theta)=c \theta+d
$$

where c, d are constants. So in the (x, y)-coordinate, we have

$$
v(x, y)=c \arctan \frac{y}{x}+d
$$

(d) $\mathrm{By}(\mathrm{a})$,

$$
u(x, y)=f\left(\frac{x}{y}\right)=a \arctan \frac{x}{y}+b .
$$

So

$$
h(x)=\lim _{y \rightarrow 0} u(x, y)= \begin{cases}\frac{\pi}{2} a+b, & x>0 \\ b, & x=0 \\ -\frac{\pi}{2} a+b, & x<0\end{cases}
$$

(e) By (d), we see that $h(x)$ is not continuous unless u is a constant. This agrees with the condition that $h(x)$ is continuous in Exercise 6.
9. Here the methof of reflection is used. Let $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ such that $a x_{0}+b y_{0}+c z_{0}>0$, then its reflection point $\mathbf{x}_{0}^{\prime}=\left(x_{0}^{\prime}, y_{0}^{\prime}, z_{0}^{\prime}\right)$ about the hyperplane $\{a x+b y+c z=0\}$ satisfies

$$
\begin{aligned}
x_{0}^{\prime} & =x_{0}-\frac{2 a}{a^{2}+b^{2}+c^{2}}\left(a x_{0}+b y_{0}+c z_{0}\right), \\
y_{0}^{\prime} & =y_{0}-\frac{2 b}{a^{2}+b^{2}+c^{2}}\left(a x_{0}+b y_{0}+c z_{0}\right), \\
z_{0}^{\prime} & =z_{0}-\frac{2 c}{a^{2}+b^{2}+c^{2}}\left(a x_{0}+b y_{0}+c z_{0}\right) .
\end{aligned}
$$

So the Green's function for the tilted half-space $\{(x, y, z): a x+b y+c z>0\}$ is given by

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}^{\prime}\right|}
$$

10. In case \mathbf{x}_{0}, the formula for the Green's function is

$$
G(\mathbf{x}, \mathbf{0})=-\frac{1}{4 \pi|\mathbf{x}|}+\frac{1}{4 \pi a}
$$

since $-\frac{1}{4 \pi|\mathbf{x}|}+\frac{1}{4 \pi a} \in C^{2}$ and is harmonic in $B_{a}(\mathbf{0})$, except at the point $\mathbf{x}=\mathbf{0} ;\left.\left[-\frac{1}{4 \pi|\mathbf{x}|}+\frac{1}{4 \pi a}\right]\right|_{|\mathbf{x}|=a}=0$; and $\left[-\frac{1}{4 \pi|\mathbf{x}|}+\frac{1}{4 \pi a}\right]+\frac{1}{4 \pi|\mathbf{x}|}$ is harmonic at $\mathbf{0}$.
13. Let $\mathbf{x}_{0} \in D$, then we have

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\frac{1}{4 \pi\left|r_{0} \mathbf{x} / a-a \mathbf{x}_{0} / r_{0}\right|}
$$

is the Green's function at \mathbf{x}_{0} for the whole ball, where a is the radius and $r_{0}=\left|\mathbf{x}_{0}\right|$.
Let $\mathbf{x}_{0}^{\prime}=\left(x_{0}, y_{0},-z_{0}\right)$, then

$$
G\left(\mathbf{x}, \mathbf{x}_{0}^{\prime}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}^{\prime}\right|}+\frac{1}{4 \pi\left|r_{0} \mathbf{x} / a-a \mathbf{x}_{0}^{\prime} / r_{0}\right|}
$$

is the Green's function at \mathbf{x}_{0}^{\prime} for the whole ball. Note that $G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G\left(\mathbf{x}, \mathbf{x}_{0}^{\prime}\right)$ on ∂D and $G\left(\mathbf{x}, \mathbf{x}_{0}^{\prime}\right)$ is a harmonic function on D. Hence, $G\left(\mathbf{x}, \mathbf{x}_{0}\right)-G\left(\mathbf{x}, \mathbf{x}_{0}^{\prime}\right)$ is the Green's function for D by the uniqueness of the Green's function.
15. (a) If $v(x, y)$ is harmonic and $u(x, y)=v\left(x^{2}-y^{2}, 2 x y\right)$, then

$$
u_{x}=2 x v_{x}+2 y v_{y}, \quad u_{y}=-2 y v_{x}+2 x v_{y} .
$$

Thus

$$
\begin{aligned}
u_{x x}+u_{y y} & =2 v_{x}+4 x^{2} v_{x x}+4 x y v_{x y}+4 x y v_{y x}+4 y^{2} v_{y y} \\
& -2 v_{x}+4 y^{2} v_{x x}-4 x y v_{x y}-4 x y v_{y x}+4 x^{2} v_{y y} \\
& =4\left(x^{2}+y^{2}\right)\left(v_{x x}+v_{y y}\right)=0 .
\end{aligned}
$$

(b) Using the polar coordinates, the transformation si

$$
(r \cos \theta, r \sin \theta) \mapsto\left(r^{2} \cos 2 \theta, r^{2} \sin 2 \theta\right)
$$

Therefore, it maps the first quadrant onto the half-plane $\{y>0\}$. Note that the transformation is one-one which also maps the x-positive-axis to x-positive-axis and y-positive-axis to x-negative-axis.
17. (a) Here the method of reflection is used and you can also use the result of Exercise 155 to find the Green's function for the quadrant Q. Let $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right) \in Q, \mathbf{x}_{0}^{y}=\left(-x_{0}, y_{0}\right), \mathbf{x}_{0}^{x}=\left(x_{0},-y_{0}\right)$ and $\mathbf{x}_{0}^{0}=\left(-x_{0},-y_{0}\right)$. Then it is easy to verify that

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}\right|-\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}^{y}\right|-\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}^{x}\right|+\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}^{0}\right|
$$

is the Green's function at \mathbf{x}_{0} for the quadrant Q.
(b) (Extra Problem 3)

$$
\begin{aligned}
& \left.\frac{\partial G}{\partial n}\right|_{x=0, y>0}=-\frac{\partial G}{\partial x}=\frac{x_{0}}{\pi}\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{2}}-\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}^{0}\right|^{2}}\right) \\
& \left.\frac{\partial G}{\partial n}\right|_{x>0, y=0}=-\frac{\partial G}{\partial y}=\frac{y_{0}}{\pi}\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{2}}-\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}^{0}\right|^{2}}\right)
\end{aligned}
$$

By formula (1) in Section 7.3 in the textbook,

$$
\begin{aligned}
u\left(\mathbf{x}_{0}\right) & =\iint_{\text {bdy } D} u(\mathbf{x}) \frac{\partial G\left(\mathbf{x}, \mathbf{x}_{0}\right)}{\partial n} d S \\
& =\frac{x_{0}}{\pi} \int_{0}^{\infty} g(y)\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{2}}-\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}^{0}\right|^{2}}\right) d y+\frac{y_{0}}{\pi} \int_{0}^{\infty} h(x)\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{2}}-\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}^{0}\right|^{2}}\right) d x
\end{aligned}
$$

19. Consider the four-dimensional laplacian $\Delta u=u_{x x}+u_{y y}+u_{z z}+u_{w w}$. Show that its fundamental solution is r^{-2}, where $r^{2}=x^{2}+y^{2}+z^{2}+w^{2}$. proof: Direct computation according to its definition.
20. Using the conclusion in 17 and 20, we have the singular part of the Green function is $-\frac{1}{8 \omega_{4}}\left|\mathbf{x}-\mathbf{x}_{0}\right|^{-2}$, where ω_{4} is the volume of $S^{3}, \mathbf{x}=(x, y, z, w)$ and $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$. So the Green function is

$$
-\frac{1}{8 \omega_{4}}\left|\mathbf{x}-\mathbf{x}_{0}\right|^{-2}+\frac{1}{8 \omega_{4}}\left|\mathbf{x}-\mathbf{x}_{0}^{-}\right|^{-2}
$$

where $\mathbf{x}_{0}^{-}=\left(x_{0}, y_{0}, z_{0},-w_{0}\right)$.
21. By the formula (2)(3) in Section7.3, we get

$$
u\left(\mathbf{x}_{0}\right)=\iint_{b d y D}\left(u \frac{\partial N}{\partial n}-\frac{\partial u}{\partial n} N\right)=\iint_{b d y D}-\frac{\partial u}{\partial n} N
$$

since $\frac{\partial N}{\partial n}=0$ on the boundary. Thus we proved the following theorem:
If $N\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is the Neumann function, then the solution of the Neumann problem is given by the formula

$$
u\left(\mathbf{x}_{0}\right)=-\iint_{b d y D} \frac{\partial u}{\partial n} N
$$

22. (Extra Problem 4)By the formula (4) in Section7.4,

$$
u\left(\mathbf{x}_{0}\right)=\frac{z_{0}}{2 \pi} \iint_{z=0} \frac{\frac{1}{\sqrt{x^{2}+y^{2}+1}}}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{3}} d S
$$

If the bounded condition is dropped, then we have $v=u+a z$ where a is arbitrary real number is also a solution.

