Suggested Solution to Assignment 6

Exercise 6.1

2. Note that in the spherical coordinates (r, θ, ϕ),

$$
\Delta_{3}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} .
$$

Thus,

$$
u_{r r}+\frac{2}{r} u_{r}=\Delta_{3} u=k^{2} u
$$

Let $u=v / r$, we get

$$
u_{r}=\frac{v_{r}}{r}-\frac{v}{r^{2}}, \quad u_{r r}=\frac{v_{r r}}{r}-\frac{2 v_{r}}{r^{2}}+\frac{2 v}{r^{3}} .
$$

Hence, by the equation of $u, v_{r r}=k^{2} v$, which implies $v(r)=A e^{-k r}+B e^{k r}$, where A, B are constants. Therefore, $u(r)=A \frac{1}{r} e^{-k r}+B \frac{1}{r} e^{k r}$, where A, B are constants.
4. We have known that $-c_{1} r^{-1}+c_{2}$ is a solution, where c_{1} and c_{2} satisfy the equation:

$$
-c_{1} a^{-1}+c_{2}=A, \quad-c_{1} b^{-1}+c_{2}=B
$$

Hence,

$$
u(x, t)=a b \frac{A-B}{b-a} r^{-1}+A+b \frac{B-A}{b-a}, \text { where } r=\sqrt{x^{2}+y^{2}+z^{2}},
$$

is a solution. Therefore, it is the unique solution by the Uniqueness Theorem of the Dirichlet problem for the Laplace's equation.
6. Firstly, we find a solution depending only on r. Let $u(r)$, where $r=\sqrt{x^{2}+y^{2}}$, is a solution. As before, we have

$$
u=\frac{1}{4} r^{2}+c_{1} \ln r+c_{2}, \text { where } c_{1}, c_{2} \text { are constants. }
$$

By the boundary conditions, we get

$$
\frac{1}{4} a^{2}+c_{1} \ln a+c_{2}=0, \quad \frac{1}{4} b^{2}+c_{1} \ln b+c_{2}=0
$$

Hence,

$$
u(x, y)=\frac{1}{4}\left(r^{2}-a^{2}\right)-\frac{b^{2}-a^{2}}{4(\ln b-\ln a)}(\ln r-\ln a)
$$

is the unique solution by the Uniqueness Theorem.
7. Firstly, we look for a solution depending only on $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Let $u(r)$ be a solution, then as before,

$$
u_{r r}+\frac{2}{r} u_{r}=1
$$

from which we have

$$
u=\frac{1}{6} r^{2}+\frac{c_{1}}{r}+c_{2}, \text { where } c_{1}, c_{2} \text { are constants. }
$$

Thus, by the boundary conditions, we get

$$
\frac{1}{6} a^{2}+\frac{c_{1}}{a}+c_{2}=0, \quad \frac{1}{6} b^{2}+\frac{c_{1}}{b}+c_{2}=0
$$

Hence,

$$
u(x, y)=\frac{1}{6}\left(r^{2}-a^{2}\right)+a b \frac{a+b}{6}\left(\frac{1}{r}-\frac{1}{a}\right),
$$

is the unique solution by the Uniqueness Theorem.
9. (a) Firstly, we look for a solution depending only on $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Let $u(r)$ be a solution, then as before,

$$
u_{r r}+\frac{2}{r} u_{r}=0
$$

from which we have $u_{r}=\frac{c}{r}+d$, where c, d are constants. Thus, by the boundary conditions, we have

$$
c+d=100, \quad c=4 \gamma
$$

Therefore, $u=\frac{4 \gamma}{r}+100-4 \gamma$. u is unique by the maximal principle.
(b) The hottest temperature is $100^{\circ} \mathrm{C}$, the coldest is $100-2 \gamma$.
(c) By assumption, we have $100-2 \gamma=20$, therefore, $\gamma=40$.
11. Integrating the equation $\Delta u=f$ and using the divergence theorem,

$$
\iiint_{D} f d x d y d z=\iiint_{D} \Delta u d x d y d z=\iint_{\operatorname{bdy}(D)} \frac{\partial u}{\partial n} d S=\iint_{\operatorname{bdy}(D)} g d S .
$$

Hence, there is no solution unless

$$
\iiint_{D} f d x d y d z=\iint_{\operatorname{bdy}(D)} g d S
$$

Exercise 6.2

1. By the boundary conditions, we can guess $u_{x}(x, y)=x-a$ and $u_{y}(x, y)=-y+b$. Luckily these also satisfy the equation. Hence,

$$
u(x, y)=\frac{1}{2} x^{2}-\frac{1}{2} y^{2}-a x+b y+c, \text { where } c \text { is any constant, }
$$

are solutions. Actually, we can prove that they are all solutions by the Hopf maximum principle.
2. Let $(m, n) \neq\left(m^{\prime}, n^{\prime}\right)$, then

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{\pi}(\sin m y \sin n z)\left(\sin m^{\prime} y \sin n^{\prime} z\right) d y d z \\
= & \left(\int_{0}^{\pi} \sin m y \sin m^{\prime} y d y\right)\left(\int_{0}^{\pi} \sin n z \sin n^{\prime} z d z\right)=0,
\end{aligned}
$$

so the eigenfunctions $\{\sin m y \sin n z\}$ are orthogonal on the squre $\{0<y<\pi, 0<z<\pi\}$.
3. Let $u(x, y)=X(x) Y(y)$, then

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda, \quad X(0)=Y^{\prime}(0)=Y^{\prime}(\pi)=0
$$

Hence,

$$
\lambda_{n}=n^{2}, Y_{n}(y)=\cos (n y), X_{0}=x, X_{n+1}=\sinh [(n+1) x], n=0,1,2, \ldots
$$

Therefore,

$$
u(x, y)=A_{0} x+\sum_{n=1}^{\infty} A_{n} \sinh (n x) \cos (n y)
$$

By the inhomogeneous boundary condition, we get

$$
A_{0} \pi+\sum_{n=1}^{\infty} A_{n} \sinh (n \pi) \cos (n y)=\frac{1}{2}(1+\cos 2 y)
$$

which implies

$$
A_{0}=\frac{1}{2 \pi}, A_{2}=\frac{1}{2 \sinh (2 \pi)}, A_{n}=0, \text { if } n \neq 0,2
$$

Therefore,

$$
u(x, y)=\frac{x}{2 \pi}+\frac{1}{2 \sinh (2 \pi)} \sinh (2 x) \cos (2 y)
$$

4. Let u_{1} satisfies

$$
\begin{aligned}
\Delta u_{1} & =0, \text { in the squre }\{0<x<1,0<y<1\} \\
u_{1}(x, 0) & =x, u_{1}(x, 1)=u_{1, x}(0, y)=u_{1, x}(1, y)=0
\end{aligned}
$$

and u_{2} satisfies

$$
\begin{array}{r}
\Delta u_{2}=0, \text { in the squre }\{0<x<1,0<y<1\} \\
u_{2}(x, 0)=u_{2}(x, 1)=u_{2, x}(0, y)=0, u_{2, x}(1, y)=y^{2},
\end{array}
$$

then $u=u_{1}+u_{2}$ is a harmonic function which we want to find.
By the method of separate variables,

$$
u_{1}=-\frac{A_{0}}{2}(y-1)+\sum_{n=1}^{\infty} A_{n} \cos (n \pi x)[\cosh (n \pi y)-\operatorname{coth}(n \pi) \sinh (n \pi y)],
$$

where

$$
A_{0}=1, A_{n}=2 \int_{0}^{1} x \cos (n \pi x) d x=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right], n=1,2, \ldots
$$

And

$$
u_{2}=\sum_{n=1}^{\infty} B_{n} \cosh (n \pi x) \sin (n \pi y)
$$

where

$$
\begin{aligned}
B_{n} & =\frac{2}{n \pi \sinh (n \pi)} \int_{0}^{1} y^{2} \sin (n \pi y) d y \\
& =\frac{2}{\sinh (n \pi)}\left\{\frac{(-1)^{n+1}}{n^{2} \pi^{2}}+\frac{2}{n^{4} \pi^{4}}\left[(-1)^{n}-1\right]\right\}, n=1,2, \ldots
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
u=-\frac{1}{2}(y-1) & +\sum_{n=1}^{\infty} A_{n} \cos (n \pi x)[\cosh (n \pi y)-\operatorname{coth}(n \pi) \sinh (n \pi y)] \\
& +\sum_{n=1}^{\infty} B_{n} \cosh (n \pi x) \sin (n \pi y)
\end{aligned}
$$

where

$$
A_{n}=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right], B_{n}=\frac{2}{\sinh (n \pi)}\left\{\frac{(-1)^{n+1}}{n^{2} \pi^{2}}+\frac{2}{n^{4} \pi^{4}}\left[(-1)^{n}-1\right]\right\}, n=1,2, \ldots
$$

6. Let $u(x, y, z)=X(x) Y(y) Z(z)$, then

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}=0, \quad X^{\prime}(0)=X^{\prime}(1)=Y^{\prime}(0)=Y^{\prime}(1)=Z^{\prime}(0)=0 .
$$

Hence,

$$
X_{m}(x)=\cos (m \pi x), Y_{n}(y)=\cos (n \pi y), m, n=0,1,2, \ldots,
$$

and

$$
Z^{\prime \prime}=\left(m^{2}+n^{2}\right) \pi^{2} Z, Z^{\prime}(0)=0
$$

Therefore,

$$
\begin{aligned}
u(x, y, z)= & \frac{1}{4} A_{00}+\frac{1}{2} \sum_{m=0}^{\infty} A_{m 0} \cos (m \pi x) \cosh (m \pi z)+\frac{1}{2} \sum_{n=0}^{\infty} A_{0 n} \cos (n \pi y) \cosh (n \pi z) \\
& +\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} \cos (m \pi x) \cos (n \pi y) \cosh \left(\sqrt{m^{2}+n^{2}} \pi z\right) .
\end{aligned}
$$

Finally, by the inhomogeneous boundary condition, we get

$$
\begin{aligned}
g(x, y)= & \frac{1}{2} \sum_{m=0}^{\infty} A_{m 0} m \pi \sinh (m \pi) \cos (m \pi x) \cosh (m \pi z)+\frac{1}{2} \sum_{n=0}^{\infty} A_{0 n} n \pi \sinh (n \pi) \cos (n \pi y) \cosh (n \pi z) \\
& +\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} \sqrt{m^{2}+n^{2}} \pi \sinh \left(\sqrt{m^{2}+n^{2}} \pi\right) \cos (m \pi x) \cos (n \pi y) \cosh \left(\sqrt{m^{2}+n^{2}} \pi z\right),
\end{aligned}
$$

which implies

$$
A_{m n}=\frac{4}{\sqrt{\left.m^{2}+n^{2}\right) \pi \sinh \left(\sqrt{m^{2}+n^{2}} \pi\right)}} \int_{0}^{1} \int_{0}^{1} g(x, y) \cos (m \pi x) \cos (n \pi y) d x d y, \quad m^{2}+n^{2} \neq 0
$$

and A_{00} is any constant. We can prove that they are all solutions by the Hopf maximum.
7(a). Let $u(x, y)=X(x) Y(y)$, then

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0, \quad X(0)=X(\pi)=0
$$

Hence,

$$
X_{n}(x)=\sin (n \pi), n=1,2, \ldots, \text { and } Y^{\prime \prime}=n^{2} Y, \lim _{y \rightarrow 0} Y(y)=0
$$

Thus,

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi) e^{-n y}
$$

Finally, by the inhomogeneous condition $h(x)=\sum_{n=1}^{\infty} A_{n} \sin (n x)$, we have

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} h(x) \sin (n x) d x
$$

And the solution is

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{2}{\pi}\left(\int_{0}^{\pi} h(x) \sin (n x) d x\right) \sin (n x) e^{-n y}
$$

Exercise 6.3

1. (a) By the Maximum Principle,

$$
\max _{\bar{D}} u=\max _{\partial D} u=\max _{\theta}(3 \sin 2 \theta+1)=4 .
$$

(b) By the Mean Value property,

$$
u(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(3 \sin 2 \theta+1) d \theta=1
$$

2. By the formula (10)-(12) in the textbook,

$$
u(x, y)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)
$$

where

$$
A_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} h(\theta) \cos n \theta d \theta, \quad B_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} h(\theta) \sin n \theta d \theta
$$

Since $h(\theta)=1+3 \sin \theta$, we get

$$
A_{0}=2, A_{n}=0(n>0), B_{1}=\frac{3}{a}, B_{m}=0(m>1)
$$

Hence,

$$
u(r, \theta)=1+\frac{3 r}{a} \sin \theta
$$

3. As before, since

$$
h(\theta)=\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta,
$$

we get

$$
A_{n}=0(n \in \mathrm{~N}), B_{1}=\frac{3}{4 a}, B_{3}=-\frac{1}{4 a^{3}}, B_{m}=0(m \neq 1,3) .
$$

Use the same way, the solution should be

$$
u(r, \theta)=\frac{3}{4 a} r \sin \theta-\frac{r^{3}}{4 a^{3}} \sin 3 \theta
$$

Problem 4. By Poisson's formula,

$$
u(x, y)=u(r, \theta)=\left(1-r^{2}\right) \int_{0}^{2 \pi} \frac{u(1, \phi)}{1-2 r \cos (\theta-\phi)+r^{2}} \frac{d \phi}{2 \pi} \leq \frac{1-r^{2}}{(1-r)^{2}} \int_{0}^{2 \pi} u(1, \phi) \frac{d \phi}{2 \pi}=\frac{1+r}{1-r} u(0,0)
$$

since $u \geq 0, \cos (\theta-\phi) \leq 1$ and u has the Mean-Value Property. Similarly,

$$
u(x, y)=u(r, \theta)=\left(1-r^{2}\right) \int_{0}^{2 \pi} \frac{u(1, \phi)}{1-2 r \cos (\theta-\phi)+r^{2}} \frac{d \phi}{2 \pi} \geq \frac{1-r^{2}}{(1+r)^{2}} \int_{0}^{2 \pi} u(1, \phi) \frac{d \phi}{2 \pi}=\frac{1-r}{1+r} u(0,0)
$$

since $u \geq 0, \cos (\theta-\phi) \geq-1$ and u has the Mean-Value Property.
Problem 5. (a)Use the Strong Maximum Principle.
(b)By Problem $4(r=1 / 2), \frac{1}{3}=\frac{1-1 / 2}{1+1 / 2} \leq u(x, y) \leq \frac{1+1 / 2}{1-1 / 2}=3$

Problem 6. Since u is a harmonic function in $B_{1}(0) \backslash(0,0), u(x, y)$ is smooth in $B_{1}(0) \backslash(0,0)$. Define

$$
v(x, y)=v(r, \theta)=\frac{1 / 4-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{h(\phi)}{1 / 4-2 \cos (\theta-\phi)+r^{2}} d \phi, \text { for } r<1 / 2
$$

where $h(\phi)=u(1 / 2, \phi)$, and $w:=u-v$, then $v(x, y)$ is a harmonic function in $B_{1 / 2}(0), w$ is a harmonic function in $B_{1 / 2}(0) \backslash(0,0), w=0$ on $\partial B_{1 / 2}(0)$ and w is bounded in $B_{1 / 2}(0)$. Now, it suffices to show that $w \equiv 0$ in $B_{1 / 2}(0) \backslash(0,0)$:
For any fixed $\left(x_{0}, y_{0}\right) \in B_{1 / 2}(0) \backslash(0,0), r_{0}:=\sqrt{x_{0}^{2}+y_{0}^{2}}$. $\forall \varepsilon>0$, define $v_{\varepsilon}(r):=-\varepsilon \log (2 r)$, which is harmonic in $B_{1 / 2}(0) \backslash(0,0)$. Since $v_{\varepsilon}=0$ on $\partial B_{1 / 2}(0)$ and $\lim _{r \rightarrow 0^{+}} v_{\varepsilon}=+\infty$, we can choose r_{1} small enough such that $0<r_{1}<r_{0}$ and $v_{\varepsilon}(r)>\sup _{B_{1 / 2} \backslash(0,0)} w$ on $r=r_{1}$. Thus, by the Maximum Principle on $A:=\left\{(x, y): r_{1}<\sqrt{x^{2}+y^{2}}<1 / 2\right\}$, we get $w\left(x_{0}, y_{0}\right) \leq-\varepsilon \log \left(2 r_{0}\right)$. Let $\varepsilon \rightarrow 0^{+}$, we get $w\left(x_{0}, y_{0}\right) \leq 0$. Similarly, for $-w$ we get $-w\left(x_{0}, y_{0}\right) \leq 0$. Therefore, $w\left(x_{0}, y_{0}\right)=0$.

Exercise 6.4

1. Since the only difference between the formulas of harmonic function in the interior and exterior of a disk is that r and a are replaced by r^{-1} and a^{-1}. Therefore, by the result in the exercise 6.4.2

$$
u(r, \theta)=1+\frac{3 a}{r} \sin \theta .
$$

6. Using the separation of variables technique, we have

$$
\Theta^{\prime \prime}+\lambda \Theta=0, \quad r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0 .
$$

So the homogenous conditions lead to

$$
\Theta^{\prime \prime}+\lambda \Theta=0, \quad \Theta(0)=\Theta(\pi)=0
$$

Hence,

$$
\lambda_{n}=n^{2}, \Theta(\theta)=\sin n \theta, n=1,2, \ldots
$$

and then

$$
\begin{aligned}
& R_{n}(r)=r^{n}, n=1,2, \ldots \\
& u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{n} \sin n \theta
\end{aligned}
$$

Finally, the inhomogeneous boundary condition requires that

$$
\pi \sin \theta-\sin 2 \theta=\sum_{n=1}^{\infty} A_{n} \sin n \theta
$$

which implies

$$
A_{1}=\pi, A_{2}=-1, A_{n}=0(n \neq 1,2) .
$$

So the solution is

$$
u(r, \theta)=\pi r \sin \theta-r^{2} \sin 2 \theta
$$

9. It is obvious that $u(r, \theta)=\theta$ is a solution. Hence, by the uniqueness theorem, $u(r, \theta)=\theta$ is the unique solution.
10. By the example 1 in the textbook Section 6.4 (Please do it again) and letting $\beta=\pi / 2, h(\theta)=1$, we have

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{2 n} \sin 2 n \theta
$$

where

$$
A_{n}=a^{1-2 n} \frac{2}{n \pi} \int_{0}^{\pi / 2} \sin (2 n \theta) d \theta=a^{1-2 n} \frac{1}{n^{2} \pi}\left[1-(-1)^{n}\right]
$$

The first two nonzero terms are

$$
\frac{2}{a \pi} r^{2} \sin 2 \theta, \frac{2}{9 a^{5} \pi} r^{6} \sin 6 \theta
$$

11. Multiplying u in the both sides of equation and using the divergence theorem,

$$
\int_{\partial D} u \frac{\partial u}{\partial n}-\int_{D}|\nabla u|^{2}=0 .
$$

Using Robin boundary condition,

$$
-a \int_{\partial D} u^{2}-\int_{D}|\nabla u|^{2}=0
$$

which implies $\nabla u=0$ in the D and $u=0$ on ∂D since $a>0$. So $u \equiv 0$ in D.
13. It is similiar to the Example 1 in Section 6.4 in the textbook. Here we only give the result and leave the details to you.
For the eigenvalue problem of $\Theta(\theta)$, we have

$$
\lambda_{n}=\left(\frac{n \pi}{\beta-\alpha}\right)^{2}, \quad \Theta_{n}(\theta)=\sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha}, n=1,2, \ldots .
$$

For the eigenvalue problem of $R(r)$, we have

$$
R_{n}(r)=A_{n} r^{\frac{n \pi}{\beta-\alpha}}+B_{n} r^{-\frac{n \pi}{\beta-\alpha}}, n=1,2, \ldots
$$

So the solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty}\left(A_{n} r^{\frac{n \pi}{\beta-\alpha}}+B_{n} r^{-\frac{n \pi}{\beta-\alpha}}\right) \sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha} .
$$

By setting $r=a$ and $r=b$ the coefficients A_{n} and B_{n} should satisfy

$$
\left\{\begin{array}{l}
A_{n} a^{\frac{n \pi}{\beta-\alpha}}+B_{n} a^{-\frac{n \pi}{\beta-\alpha}}=\frac{2}{\beta-\alpha} \int_{\alpha}^{\beta} g(\theta) \sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha} d \theta \\
A_{n} b^{\frac{n \pi}{\beta-\alpha}}+B_{n} b^{-\frac{n \pi}{\beta-\alpha}}=\frac{2}{\beta-\alpha} \int_{\alpha}^{\beta} h(\theta) \sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha} d \theta
\end{array}\right.
$$

then

$$
\left\{\begin{array}{l}
A_{n}=\frac{A a^{\frac{n \pi}{\beta-\alpha}}-B b^{\frac{n \pi}{\beta-\alpha}}}{a^{2 \frac{n \pi}{\beta-\alpha}}-b^{2 \frac{n \pi}{\beta-\alpha}}} \\
B_{n}=\frac{A a^{-\frac{n \pi}{\beta-\alpha}}-B b^{-\frac{n-\alpha}{\beta-\alpha}}}{a^{-2 \frac{n \pi}{\beta-\alpha}}-b^{-2 \frac{n \pi}{\beta-\alpha}}}
\end{array}\right.
$$

where

$$
A=\frac{2}{\beta-\alpha} \int_{\alpha}^{\beta} g(\theta) \sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha} d \theta, B=\frac{2}{\beta-\alpha} \int_{\alpha}^{\beta} h(\theta) \sin \frac{n \pi(\theta-\alpha)}{\beta-\alpha} d \theta
$$

Problem 7. Write $u(r, \theta)=R(r) \Theta(\theta)$, then $r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime}}{\Theta}=: \lambda$ and $\Theta^{\prime}(0)=0=\Theta(\pi), \Rightarrow \lambda=\frac{\int_{0}^{\pi}\left|\Theta^{\prime}\right|^{2}}{\int_{0}^{\pi} \Theta^{2}}>0$ since u is nontrivial. \Rightarrow We can write $\lambda=\beta^{2}, \beta>0$ and $\Theta^{\prime \prime}+\beta^{2} \Theta=0$,

$$
\begin{aligned}
& \Rightarrow \beta_{n}=1 / 2+n, \Theta_{n}=\cos \left(\beta_{n} \theta\right), n=0,1,2, \ldots \\
& \Rightarrow u(r, \theta)=\sum_{n=0}^{\infty}\left(c_{n} r^{\beta_{n}}+d_{n} r^{-\beta_{n}}\right) \cos \left(\beta_{n} \theta\right)
\end{aligned}
$$

By the boundary conditions, $u(1, \theta)=\cos ^{3}(\theta / 2)=1 / 4 \cos (3 \theta / 2)+3 / 4 \cos (\theta / 2)$ and $u(2, \theta)=4 \cos (5 \theta / 2)$
$\Rightarrow c_{1}+d_{1}=1 / 4 ; c_{0}+d_{0}=3 / 4 ; c_{n}+d_{n}=0$ if $n \neq 0,1 ; c_{2} 2^{\beta_{2}}+d_{2} 2^{-\beta_{2}}=4 ; c_{n} 2^{\beta_{n}}+d_{n} 2^{-\beta_{n}}=0$ if $n \neq 2$
$\Rightarrow c_{n}=d_{n}=0$ ifn $\neq 0,1,2 ; c_{0}=-3 / 4, d_{0}=3 / 2, c_{1}=-1 / 28, d_{1}=2 / 7, c_{2}=\frac{16 \sqrt{2}}{31}=-d_{2}$.

