Suggested Solution to Assignment 4

Exercise 4.1

2. The solution to this problem satisfies the following PDE

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad(0<x<l, 0<t<\infty) \\
& u(0, t)=u(l, t)=0 \\
& u(x, 0)=1
\end{aligned}
$$

Following the process in Page 85 of the textbook, we have

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \frac{n \pi x}{l},
$$

and the initial condition implies

$$
1=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{l} .
$$

By the assumption, we have $A_{n}=\frac{4}{n \pi}$ for odd n and $A_{n}=0$ for even ones. Then

$$
u(x, t)=\sum_{k=1}^{\infty} \frac{4}{(2 k-1) \pi} e^{-\left(\frac{(2 k-1) \pi}{l}\right)^{2} k t} \sin \frac{(2 k-1) \pi x}{l}
$$

4. Let $u(x, t)=T(t) X(x)$, we have

$$
\frac{T^{\prime \prime}+r T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda .
$$

Hence,

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, X(x)=\sin \frac{n \pi x}{l}, n=1,2, \cdots .
$$

Since $0<r<2 \pi c / l$, we get

$$
T_{n}(t)=\left[A_{n} \cos \left(\sqrt{-\Delta_{n}} t / 2\right)+B_{n} \sin \left(\sqrt{-\Delta_{n}} t / 2\right)\right] e^{-r t / 2}, n=1,2, \cdots,
$$

where $\Delta_{n}=r^{2}-(2 n \pi c / l)^{2}$ relative to the equation

$$
\lambda^{2}+r \lambda+\left(\frac{n \pi c}{l}\right)^{2}=0
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{-\Delta_{n}} t / 2\right)+B_{n} \sin \left(\sqrt{-\Delta_{n}} t / 2\right)\right] e^{-r t / 2} \sin \frac{n \pi x}{l}
$$

5. Let $u(x, t)=T(t) X(x)$, we have

$$
\frac{T^{\prime \prime}+r T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda .
$$

Hence,

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, X(x)=\sin \frac{n \pi x}{l}, n=1,2, \cdots .
$$

When $n=1$, since $2 \pi c / l<r<4 \pi c / l$,

$$
T_{1}(t)=A_{1} e^{\lambda_{1}^{+} t}+B_{1} e^{\lambda_{1}^{-} t},
$$

where $\lambda_{1}^{ \pm}=\frac{-r \pm \sqrt{r^{2}-\left(\frac{2 \pi c}{l}\right)^{2}}}{2}$ are the roots of the equation $\lambda^{2}+r \lambda+\left(\frac{\pi c}{l}\right)^{2}=0$.
When $n \geq 2$,

$$
T_{n}(t)=\left[A_{n} \cos \left(\sqrt{-\Delta_{n}} t / 2\right)+B_{n} \sin \left(\sqrt{-\Delta_{n}} t / 2\right)\right] e^{-r t / 2}, n=1,2, \cdots,
$$

where $\Delta_{n}=r^{2}-(2 n \pi c / l)^{2}$ relative to the equation $\lambda^{2}+r \lambda+\left(\frac{n \pi c}{l}\right)^{2}=0$.
Therefore,

$$
u(x, t)=\left[A_{1} e^{\lambda_{1}^{+} t}+B_{1} e^{\lambda_{1}^{-} t}\right] \sin \frac{\pi x}{l}+\sum_{n=2}^{\infty}\left[A_{n} \cos \left(\sqrt{-\Delta_{n}} t / 2\right)+B_{n} \sin \left(\sqrt{-\Delta_{n}} t / 2\right)\right] e^{-r t / 2} \sin \frac{n \pi x}{l} .
$$

6. Let $u(x, t)=T(t) X(x)$, we have

$$
\begin{gathered}
\frac{t T^{\prime}-2 T}{T}=\frac{X^{\prime \prime}}{X}=-\lambda \\
\lambda_{n}=n^{2}, X(x)=\sin n x, n=1,2, \cdots
\end{gathered}
$$

The initial condition implies

$$
t T^{\prime}-2 T=-\lambda T, T(0)=0
$$

Therefore,

$$
u(x, t)=c t \sin x, \quad \text { for any constant } c,
$$

are solutions. So uniqueness is false for this equation!

Exercise 4.2

1. Let $u(x, t)=T(t) X(x)$, we have

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}=-\lambda .
$$

The initial condition implies

$$
-X^{\prime \prime}=\lambda X, X(0)=X^{\prime}(l)=0
$$

So by solving the above DE, the eigenvalues are $\left[\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right]^{2}$, the eigenfunctions are $X_{n}(x)=\sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l}$ for $n=0,1,2, \cdots$, and the solution is

$$
u(x, t)=\sum_{n=0}^{\infty} e^{-\left[\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right]^{2} k t} \sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l} .
$$

2. (a) This can be proved as above. Here we give another proof. Since $X^{\prime}(0)=0$, the we can use even expansion, this is, $X(-x)=X(x)$ for $-l \leq x \leq 0$, then X satisfies

$$
-X^{\prime \prime}=\lambda X, \quad X(-l)=X(l)=0
$$

Hence,

$$
\lambda_{n}=\left[\left(n+\frac{1}{2}\right) \pi\right]^{2} / l^{2}, \quad X_{n}(x)=\cos \left[\left(n+\frac{1}{2}\right) \pi x / l\right], n=0,1,2, \cdots .
$$

(b) Having known the eigenvalues, it is easy to get the solution

$$
u(x, t)=\sum_{n=0}^{\infty}\left[A_{n} \cos \frac{\left(n+\frac{1}{2}\right) \pi c t}{l}+B_{n} \sin \frac{\left(n+\frac{1}{2}\right) \pi c t}{l}\right] \cos \frac{\left(n+\frac{1}{2}\right) \pi x}{l}
$$

3. We just show how to solve the eigenvalue problem under the periodic boundary conditions; As before, let $u(x, t)=T(t) X(x)$,

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Solving $T^{\prime}=-\lambda k T$ gives $T=A e^{-\lambda k T}$. The general solutions of $X^{\prime \prime}+\lambda X=0$ are $X=C e^{\gamma x}+D e^{-\gamma x}$, where let λ is a complex number and γ is either one of the two roots of $-\lambda$; the other one is $-\gamma$. The boundary conditions yield

$$
C e^{-\gamma l}+D e^{\gamma l}=C e^{\gamma l}+D e^{-\gamma l}, \gamma\left(C e^{-\gamma l}-D e^{\gamma l}\right)=\gamma\left(C e^{\gamma l}-D e^{-\gamma l}\right) .
$$

Hence $e^{2 \gamma l}=1$ and then

$$
\begin{aligned}
& \gamma= \pm n \pi i / l, \lambda=-\gamma^{2}=(n \pi / l)^{2}, n=0,1,2, \cdots \\
& X_{n}(x)= \begin{cases}\frac{1}{2} A_{0} & n=0 \\
A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}, T=e^{-(n \pi / l)^{2} k t} & n=1,2, \cdots\end{cases}
\end{aligned} .
$$

Therefore, the concentration is

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=0}^{\infty}\left(A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}\right) e^{-(n \pi / l)^{2} k t} .
$$

Exercise 4.3

1. Firstly, let's look for the positive eigenvalues $\lambda=\beta^{2}>0$. As usual, the general solution of the ODE is

$$
X(x)=C \cos \beta x+D \sin \beta x .
$$

The boundary conditions imply

$$
C=0, D \beta \cos (\beta l)+a D \sin (\beta l)=0 .
$$

Hence, $\tan (\beta l)=-\frac{\beta}{a}$. The graph is omitted.
Seconddly, let's look for the zero eigenvalue, i.e., $X(x)=A x+B$, by the boundary conditions, al $+1=0$. Hence, $\lambda=0$ is an eigenvalue if and only if $a l+1=0$.
Thirdly, let's look for the negative eigenvalues $\lambda=-\gamma^{2}<0$. As usual, the solution of the ODE is

$$
X(x)=C \cosh (\gamma x)+D \sinh (\gamma x) .
$$

Then the boundary condtions imply

$$
C=0, D \gamma \cosh (\gamma l)+a D \sinh (\gamma l)=0 .
$$

Hence, $\tanh (\gamma l)=-\frac{\gamma}{a}$. The graph is omitted.
2. (a) If $\lambda=0$, then $X(x)=A x+B$. The boundary conditions imply

$$
A-a_{0} B=0, A+a_{l}(A l+B)=0
$$

These two equalities are equivalent to

$$
a_{0}+a_{l}=-a_{0} a_{l} l .
$$

Hence, $\lambda=0$ is an eigenvalue if and only if $a_{0}+a_{l}=-a_{0} a_{l} l$.
(b) By (a), we have $X(x)=B\left(a_{0} x+1\right)$, here B is constant.
3. If $\lambda=-\gamma^{2}<0$, we have

$$
X(x)=C \cosh \gamma x+D \sinh \gamma x .
$$

Hence,

$$
X^{\prime}(x)=C \gamma \sinh \gamma x+D \gamma \cosh \gamma x
$$

and the boundary conditions imply

$$
\begin{aligned}
D \gamma-a_{0} C & =0, \\
C \gamma \sinh \gamma l+D \gamma \cosh \gamma l+a_{l}[C \cosh \gamma l+D \sinh \gamma l] & =0 .
\end{aligned}
$$

Therefore, the eigenvalues satisfy

$$
\tanh \gamma l=-\frac{\left(a_{0}+a_{l}\right) \gamma}{\gamma^{2}+a_{0} a_{l}}
$$

and the corresponding eigenfunctions are

$$
X(x)=C \cosh \gamma x+\frac{a_{0}}{\gamma} C \sinh \gamma x,
$$

where C is a constant.
4. It is easily known that the rational curve $y=-\frac{\left(a_{0}+a_{l}\right) \gamma}{\gamma^{2}+a_{0} a_{l}}$ has a single maximum at $\gamma=\sqrt{a_{0} a_{l}}$ and is monotone in the two intervals $\left(0, \sqrt{a_{0} a_{l}}\right)$ and $\left(\sqrt{a_{0} a_{l}}, \infty\right)$. Furthermore,

$$
\max _{\gamma \in[0, \infty)} y(\gamma)=-\frac{a_{0}+a_{l}}{2 \sqrt{a_{0} a_{l}}} \geq 1, \lim _{\gamma \rightarrow \infty} y(\gamma)=0, \text { for } y^{\prime}(0)=-\frac{a_{0}+a_{l}}{a_{0} a_{l}} .
$$

Note that $\tanh \gamma l$ is monotone in $[0, \infty)$,

$$
\tanh \gamma l<1 \text { when } \gamma \in[0, \infty), \lim _{\gamma \rightarrow \infty} \tanh \gamma l=1, \text { and }\left.(\tanh \gamma l)^{\prime}\right|_{\gamma=0}=l>-\frac{a_{0}+a_{l}}{a_{0} a_{l}} .
$$

Therefore, the rational curve $y=-\frac{\left(a_{0}+a_{l}\right) \gamma}{\gamma^{2}+a_{0} a_{l}}$ and the curve $y=\tanh \gamma l$ intersect at two points, that is, there are two negative eigenvalue.
5. When $\lambda=\beta^{2}>0, \beta$ satisfies (10), i.e.

$$
\tan \beta l=\frac{\left(a_{0}+a_{l}\right) \beta}{\beta^{2}-a_{0} a_{l}} .
$$

Since $y=\tan \beta l$ is monotonically increasing when $\beta \in\left(\left(n-\frac{1}{2}\right) \pi / l,\left(n+\frac{1}{2}\right) \pi / l\right)(n=0,1,2, \cdots)$ and

$$
\lim _{\beta \rightarrow\left(n-\frac{1}{2}\right) \pi / l} \tan \beta l=-\infty, \lim _{\beta \rightarrow\left(n+\frac{1}{2}\right) \pi / l} \tan \beta l=\infty
$$

while $y=\frac{\left(a_{0}+a_{l}\right) \beta}{\beta^{2}-a_{0} a_{l}}$ is negative, monotonically increasing when $\beta \in\left(\sqrt{a_{0} a_{l}}, \infty\right)$ and

$$
\lim _{\beta \rightarrow \infty} \frac{\left(a_{0}+a_{l}\right) \beta}{\beta^{2}-a_{0} a_{l}}=0
$$

the two curves intersects at infinite many points, that is, there are an infinite many number of positive eigenvalues. The graph is similiar to the Figure 1 in Section 4.3 in the textbook but $y=\frac{\left(a_{0}+a_{l}\right) \beta}{\beta^{2}-a_{0} a_{l}}$ is positive first and then negative now.
6. (a) If $a>0$, the case turns out to be case 1 in Section 4.3 and thus there are no negative eigenvalues; if $a=0$, the case turns out to be the Neumann boundary condition problem and thus there are no negative eigenvalues, either;
if $-2 / l \leq a<0$, we have $\left.(\tanh \gamma l)^{\prime}\right|_{\gamma=0}=l \leq-\frac{a_{0}+a_{l}}{a_{0} a_{l}}=-\frac{2}{a}$, using the same way as Exercise 4.3.4 above, we conclude that there is only one negative eigenvalue;
if $a<-2 l$, we have $\left.(\tanh \gamma l)^{\prime}\right|_{\gamma=0}=l>-\frac{a_{0}+a_{l}}{a_{0} a_{l}}=-\frac{2}{a}$ and thus there are two negative eigenvalues.
(b) Exercise 4.3.2 implies that $\lambda=0$ is an eigenvalue if and only if $a_{0}+a_{l}=-a_{0} a_{l} l$, i.e., $a=0$ or $a=-2 l$.
7. Under the condition $a_{0}=a_{l}=a$, the eigenvalue satisfies

$$
\lambda=\beta^{2}, \tan \beta l=\frac{2 a \beta}{\beta^{2}-a^{2}} .
$$

Hence, when $a \rightarrow \infty$ and $\frac{n \pi}{l}<\beta_{n}<\frac{(n+1) \pi}{l}, \frac{2 a \beta}{\beta^{2}-a^{2}}$ is negative and tends to 0. So Figure 1 in Section 4.3 implies

$$
\lim _{a \rightarrow \infty}\left\{\beta_{n}(a)-\frac{(n+1) \pi}{l}\right\}=0
$$

9. (a) If $\lambda=0$, then $X(x)=a x+b$ for some constants a and b. Then the boundary conditions imply $a+b=0$. Therefore, $X_{0}(x)=a x-a$ for some nonzero constant a.
(b) If $\lambda=\beta^{2}$, then $X(x)=A \cos \beta x+B \sin \beta x$. Then the boundary conditions imply

$$
A+B \beta=0, \quad A \cos \beta+B \sin \beta=0
$$

Since A, B can not both be 0 , we have $\beta=\tan \beta$.
(c) omit.
(d) If $\lambda=-\gamma^{2}$, then $X(x)=A e^{\gamma x}+B e^{-\gamma x}$ and

$$
A+B+A \gamma-B \gamma=0, A e^{\gamma}+B e^{-\gamma}=0
$$

Then we find the coefficent matrix $\left(\begin{array}{cc}1+\gamma & 1-\gamma \\ e^{2 \gamma} & e^{-\gamma}\end{array}\right)$ is always nonsingular(since $e^{\gamma}>\frac{1+\gamma}{1-\gamma}$ when $\gamma>0$, verify by yourself!), then $a=b=0$. So we conclude that there is not any negative eigenvalue.
10. Let $u(x, t)=X(x) T(t)$, by the summary on Page 97 , we can have

$$
u(x, t)=\sum_{n=1}^{\infty}\left(C_{n} \cos \beta_{n} c t+D_{n} \sin \beta_{n} c t\right)\left(\cos \beta_{n} x+\frac{a_{0}}{\beta_{n}} \sin \beta_{n} x\right)+\left(C_{0} \cosh \gamma c t+D_{0} \sinh \gamma c t\right)\left(\cosh \gamma x+\frac{a_{0}}{\gamma} \sinh \gamma x\right),
$$

where γ is determined by the intersection point of $\tanh \gamma l=-\frac{\left(a_{0}+a_{l}\right) \gamma}{\gamma^{2}+a_{0} a_{l}}$, and the intitial conditions are

$$
\begin{aligned}
& \phi(x)=\sum_{n=1}^{\infty} C_{n}\left(\cos \beta_{n} x+\frac{a_{0}}{\beta_{n}} \sin \beta_{n} x\right)+C_{0}\left(\cosh \gamma x+\frac{a_{0}}{\gamma} \sinh \gamma x\right) \\
& \psi(x)=\sum_{n=1}^{\infty} D_{n} \beta_{n} c\left(\cos \beta_{n} x+\frac{a_{0}}{\beta_{n}} \sin \beta_{n} x\right)+D_{0} \gamma c\left(\cosh \gamma x+\frac{a_{0}}{\gamma} \sinh \gamma x\right)
\end{aligned}
$$

11. (a) By the wave equation,

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{l}\left[\frac{1}{c^{2}} u_{t} u_{t t}+u_{x} u_{x t}\right] d x \\
& =\int_{0}^{l}\left[u_{t} u_{x x}+u_{x} u_{x t}\right] \\
& =\left.\left(u_{t} u_{x}\right)\right|_{0} ^{l}=u_{t}(l, t) u_{x}(l, t)-u_{t}(0, t) u_{x}(0, t)
\end{aligned}
$$

The Dirichlet boundary conditions $u(l, t)=u(0, t)=0$ imply $u_{t}(l, t)=u_{x}(l, t)=0$. Hence, $\frac{d E}{d t} \equiv 0$.
(b) Same as above. Omit here.
(c) By the computation in (a) and the Robin boundary conditions, we can get that

$$
\frac{d E_{R}}{d t}=\left.u_{t} u_{x}\right|_{0} ^{l}+a_{l} u_{t}(l, t) u(l, t)+a_{0} u_{t}(0, t) u_{x}(0, t) \equiv 0 .
$$

12. (a) Let $\lambda=0$, we have $v(x)=A x+B$. Since $v(x)=A x+B$ sitisfy the boundary conditions for any A and $B, \lambda=0$ is a double eigenvalue.
(b) Let $\lambda=\beta^{2}>0$ and suppose $\beta>0$, we have $v(x)=C \cos \beta x+D \sin \beta x$. Then boundary conditions imply

$$
D \beta=-C \beta \sin \beta l+D \beta \cos \beta l=\frac{C \cos \beta l+D \sin \beta l-C}{l}
$$

Therefore, eigenvalues $\lambda>0$ satisfies the equation

$$
\lambda=\beta^{2}, \sin \beta l(-\sin \beta l+\beta l)=(1-\cos \beta l)^{2} .
$$

(c) Let $\gamma=\frac{1}{2} l \sqrt{\lambda}$, then γ is a root of the following equation

$$
\gamma \sin \gamma \cos \gamma=\sin ^{2} \gamma
$$

(d) By (c), we have $\sin \gamma=0$ or $\gamma=\tan \gamma$. So the positive eigenvalues are $\frac{4 n^{2} \pi^{2}}{l^{2}}$ and $4 \gamma_{n}^{2} / l^{2}$ where $\gamma_{n}=\tan \gamma_{n} \in\left(n \pi-\pi, n \pi-\frac{\pi}{2}\right)$ for $n=1,2, \cdots$. The graph is omitted here.
(e) By (a) and (d), for $\lambda=0$, the eigenfuntions are 1 and x; for $\lambda=\frac{4 n^{2} \pi^{2}}{l^{2}}, n=1,2, \cdots$, the eigenfunctions are $\cos \left(\frac{2 n \pi x}{l}\right)$; for $\lambda=\frac{4 \gamma_{n}^{2}}{l^{2}}$, where $\gamma_{n}=\tan \gamma_{n} \in\left(n \pi-\pi, n \pi-\frac{1}{2} \pi\right), n=1,2, \cdots$, the eigenfunctions are

$$
\gamma_{n} \cos \frac{2 \gamma_{n} x}{l}-\sin \frac{2 \gamma_{n} x}{l} .
$$

(f) From above, we have

$$
\begin{aligned}
u(x, t)= & A+B x+\sum_{n=1}^{\infty} C_{n} e^{-\frac{4 \gamma_{n}^{2}}{l^{2}} k t}\left[\gamma_{n} \cos \frac{2 \gamma_{n} x}{l}-\sin \frac{2 \gamma_{n} x}{l}\right] \\
& +\sum_{n=1}^{\infty} D_{n} e^{-\frac{4 n^{2} \pi^{2}}{l^{2}} k t} \cos \frac{2 n \pi x}{l} .
\end{aligned}
$$

(g) By (f), we have $\lim _{t \rightarrow \infty} u(x, t)=A+B x$ since $\lim _{t \rightarrow \infty} e^{-\lambda k t}=0$.
15. Let $\lambda=\beta^{2}$, then

$$
\begin{aligned}
& X(x)=A \cos \frac{\beta \rho_{1} x}{\kappa_{1}}+B \sin \frac{\beta \rho_{1} x}{\kappa_{1}}, 0<x<a \\
& X(x)=C \cos \frac{\beta \rho_{2} x}{\kappa_{2}}+D \sin \frac{\beta \rho_{2} x}{\kappa_{2}}, a<x<l .
\end{aligned}
$$

Hence, the boundary condtions imply

$$
\begin{gathered}
A=0 ; \quad C \cos \frac{\beta \rho_{2} l}{\kappa_{2}}+D \sin \frac{\beta \rho_{2} l}{\kappa_{2}}=0 ; \\
A \cos \frac{\beta \rho_{1} a}{\kappa_{1}}+B \sin \frac{\beta \rho_{1} a}{\kappa_{1}}=C \cos \frac{\beta \rho_{2} a}{\kappa_{2}}+D \sin \frac{\beta \rho_{2} a}{\kappa_{2}} ; \\
-A \frac{\beta \rho_{1}}{\kappa_{1}} \sin \frac{\beta \rho_{1} a}{\kappa_{1}}+B \frac{\beta \rho_{1}}{\kappa_{1}} \cos \frac{\beta \rho_{1} a}{\kappa_{1}}=-C \frac{\beta \rho_{2}}{\kappa_{2}} \sin \frac{\beta \rho_{2} a}{\kappa_{2}}+D \frac{\beta \rho_{1}}{\kappa_{1}} \cos \frac{\beta \rho_{2} a}{\kappa_{2}} .
\end{gathered}
$$

Hence, when the eigenvalue is positive, i.e. $\lambda=\beta^{2}>0, \beta$ satisfies

$$
\frac{\rho_{1}}{\kappa_{1}} \cot \frac{\beta \rho_{1} a}{\kappa_{1}}+\frac{\rho_{2}}{\kappa_{2}} \cot \frac{\beta \rho_{2}(l-a)}{\kappa_{2}}=0 .
$$

Let $\lambda=0$, then the boundary conditions imply

$$
X(x)= \begin{cases}A x & 0<a<l \\ B(x-l) & a<x<l\end{cases}
$$

Since $X(x)$ should be differentiable at $x=a$, such A and B can not exist except $A=B=0$.
Let $\lambda=-\gamma^{2}<0$, then

$$
\begin{aligned}
& X(x)=A \cosh \frac{\beta \rho_{1} x}{\kappa_{1}}+B \sinh \frac{\beta \rho_{1} x}{\kappa_{1}}, 0<x<a \\
& X(x)=C \cosh \frac{\beta \rho_{2} x}{\kappa_{2}}+D \sinh \frac{\beta \rho_{2} x}{\kappa_{2}}, a<x<l .
\end{aligned}
$$

Hence, the boundary condtions imply

$$
\begin{gathered}
A=0 ; \quad C \cosh \frac{\beta \rho_{2} l}{\kappa_{2}}+D \sinh \frac{\beta \rho_{2} l}{\kappa_{2}}=0 ; \\
A \cosh \frac{\beta \rho_{1} a}{\kappa_{1}}+B \sinh \frac{\beta \rho_{1} a}{\kappa_{1}}=C \cosh \frac{\beta \rho_{2} a}{\kappa_{2}}+D \sinh \frac{\beta \rho_{2} a}{\kappa_{2}} ; \\
A \frac{\beta \rho_{1}}{\kappa_{1}} \sinh \frac{\beta \rho_{1} a}{\kappa_{1}}+B \frac{\beta \rho_{1}}{\kappa_{1}} \cosh \frac{\beta \rho_{1} a}{\kappa_{1}}=C \frac{\beta \rho_{2}}{\kappa_{2}} \sinh \frac{\beta \rho_{2} a}{\kappa_{2}}+D \frac{\beta \rho_{1}}{\kappa_{1}} \cosh \frac{\beta \rho_{2} a}{\kappa_{2}} .
\end{gathered}
$$

Hence, when the eigenvalue is negative, i.e. $\lambda=\beta^{2}>0, \beta$ satisfies

$$
\frac{\rho_{1}}{\kappa_{1}} \operatorname{coth} \frac{\beta \rho_{1} a}{\kappa_{1}}+\frac{\rho_{2}}{\kappa_{2}} \operatorname{coth} \frac{\beta \rho_{2}(l-a)}{\kappa_{2}}=0 .
$$

However, since the left handside is always positive. Therefore, there is no negative eigenvalues.
16. Let $\lambda=\beta^{4}>0$ where $\beta>0$, and $X(x)=A \cosh \beta x+B \sinh \beta x+C \cos \beta x+D \sin \beta x$. By the boundary conditions

$$
\beta_{n}=\frac{n \pi}{l}, \lambda_{n}=\left(\frac{n \pi}{l}\right)^{4}, X_{n}(x)=\sin \frac{n \pi x}{l}, n=1,2, \cdots
$$

The details are as the following exercise.
17. Let $\lambda=\beta^{4}>0$ where $\beta>0$, and $X(x)=A \cosh \beta x+B \sinh \beta x+C \cos \beta x+D \sin \beta x$. Hence by the boundary conditions,

$$
\begin{gathered}
A+C=0 \\
B+D=0 \\
A \cosh \beta l+B \sinh \beta l+C \cos \beta l+D \sin \beta l=0 \\
A \sinh \beta l+B \cosh \beta l-C \sin \beta l+D \cos \beta l=0
\end{gathered}
$$

which simplifies to

$$
A(\cosh \beta l-\cos \beta l)+B(\sinh \beta l-\sin \beta l)=0, A(\sinh \beta l+\sin \beta l)+B(\cosh \beta l-\cos \beta l)=0
$$

Since eigenfunctions are nontrivial, the determinant of the matrix should be zero, that is,

$$
\begin{gathered}
(\cosh \beta l-\cos \beta l)^{2}-\left(\sinh ^{2} \beta l-\sin ^{2} \beta l\right)=0, \\
\cosh \beta l \cos \beta l=1
\end{gathered}
$$

and the corresponding eigenfunction is

$$
X(x)=(\sinh \beta l-\sin \beta l)(\cosh \beta x-\cos \beta x)-(\cosh \beta l-\cos \beta l)(\sinh \beta x-\sin \beta x) .
$$

Problem 10. $u(x, t)=X(x) T(t) \Longrightarrow-\frac{T^{\prime \prime}(t)}{a^{2} T(t)}=\frac{X^{(4)}(x)}{X(x)}=\lambda \Longrightarrow X^{(4)}-\lambda X=0$ and $T^{\prime \prime}+\lambda a^{2} T=0$
$\Longrightarrow \lambda \int_{0}^{l}|X|^{2}=\int_{0}^{l} X^{(4)} \bar{X}=\int_{0}^{l}\left|X^{\prime \prime}\right|^{2} \Longrightarrow \lambda=\frac{\int_{0}^{l}\left|X^{\prime \prime}\right|^{2}}{\int_{0}^{l}|X|^{2}} \geq 0$
If $\lambda=0$, then $X^{\prime \prime} \equiv 0 \Longrightarrow X(x)=a x+b \Longrightarrow X \equiv 0$ since $X(0)=X(l)=0 \Longrightarrow \lambda>0$
Let $\lambda=\beta^{4}, \beta>0$, then

$$
\begin{gathered}
T(t)=A \cos \left(\beta^{2} a t\right)+B \sin \left(\beta^{2} a t\right) \\
X(x)=C e^{\beta x}+D e^{-\beta x}+E \cos (\beta x)+F \sin (\beta x)
\end{gathered}
$$

$u(0, t)=u_{x x}(0, t)=u(l, t)=u_{x x}(l, t)=0 \Longrightarrow X(0)=X(l)=X^{\prime \prime}(0)=X^{\prime \prime}(l)=0 \Longrightarrow$
$E=0, F \sin (\beta l)=0, C=-D=0 \Longrightarrow \sin (\beta l)=0 \Longrightarrow$
$\beta_{n}=\frac{n \pi}{l}, X_{n}(x)=\sin \left(\beta_{n} l\right),(n=1,2,3, \ldots)$ are distinct solutions.
$\Longrightarrow u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\beta_{n}^{2} a t\right)+B_{n} \sin \left(\beta_{n}^{2} a t\right)\right) \sin \left(\beta_{n} l\right)$ where A_{n}, B_{n} are determined by

$$
\begin{gathered}
\phi(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\beta_{n} l\right) \\
\psi(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} \beta_{n}^{2} a B_{n} \sin \left(\beta_{n} l\right)
\end{gathered}
$$

