Assignment 6

April 14, 2016

Exercise 6.1: 2, 4, 6, 7, 9, 11
Exercise 6.2: 1, 2, 3, 4, 6, 7(a)
Exercise 6.3: 1, 2, 3

Problem 4. Let $u \geq 0$ and $\Delta u=0$ in a unit disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Using the Mean-Value Property to prove the following so-called Harnack inequality

$$
\frac{1-r}{1+r} u(0,0) \leq u(x, y) \leq \frac{1+r}{1-r} u(0,0)
$$

where $r=\sqrt{x^{2}+y^{2}}<1$.

Problem 5. Consider the following problem

$$
\begin{cases}\Delta u=0 & \text { in } D=\left\{x^{2}+y^{2} \leq 1\right\} \tag{1}\\ u=h & \text { on } \partial D\end{cases}
$$

(a) Show that if $h \geq 0$, then $u>0$ in D unless $h=0$.
(b) Let $u(0)=1$ and $h \geq 0$. Show that

$$
\frac{1}{3} \leq u(x, y) \leq 3
$$

for all $x^{2}+y^{2}=\frac{1}{4}$
Problem 6. Suppose that u satisfies $u_{x x}+u_{y y}=0$ for all $(x, y) \in B_{1}(0)$ except $(x, y)=(0,0)$. Show that if u is bounded, then $\lim _{(x, y) \rightarrow(0,0)} u(x, y)$ exists and by taking $u(0,0)=\lim _{(x, y) \rightarrow(0,0)} u(x, y), u$ is actually smooth in $B_{1}(0)$.
Hint: Consider the following function $v_{\epsilon}=\epsilon \log \frac{1}{r}$.

Exercise 6.4: 1, 6, 10, 11, 13

Probme 7. Using the method of separation of variables to solve the following problem

$$
\begin{cases}u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \tag{2}\\ u(1, \theta)=\cos ^{3}\left(\frac{\theta}{2}\right), u(2, \theta)=4 \cos \left(\frac{5 \theta}{2}\right) \\ u_{\theta}(r, 0)=0, u(r, \pi)=0 . & \text { in } D=\{(r, \theta) \mid 1<r<2,0 \leq \theta \leq \pi\} \\ \end{cases}
$$

Exercise 6.1

2. Find the solutions that depend only on r of the equation $u_{x x}+u_{y y}+u_{z z}=k^{2} u$, where k is a positive constant. (Hint: Substitute $u=v / r$.)
3. Solve $u_{x x}+u_{y y}+u_{z z}=0$ in the spherical shell $0<a<r<b$ with the boundary conditions $u=A$ on $r=a$ and $u=B$ on $r=b$, where A and B are constants. (Hint: Look for a solution depending only on r.
4. Solve $u_{x x}+u_{y y}=1$ in the annulus $a<r<b$ with $u(x, y)$ vanishing on both parts of the boundary $r=a$ and $r=b$.
5. Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $a<r<b$ with $u(x, y, z)$ vanishing on both the inner and outer boundaries.
6. A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature distribution. Its inner boundary is held at $100^{\circ} \mathrm{C}$. Its outer boundary satisfies $\partial u / \partial r=-\gamma<0$, where γ is a constant.
(a) Find the temperature. (Hint: The temperature depends only on the radius.)
(b) What are the hottest and coldest temperatures?
(c) Can you choose γ so that the temperature on its outer boundary is $20^{\circ} \mathrm{C}$?
7. Show that there is no solution of

$$
\Delta u=f \quad \text { in } D, \quad \frac{\partial u}{\partial n}=g \quad \text { on bdy } D
$$

in three dimensions, unless

$$
\iiint_{D} f d x d y d z=\iint_{\operatorname{bdy}(D)} g d S
$$

(Hint: Integrate the equation.) Also show the analogue in one and two dimensions.

Exercise 6.2

1. Solve $u_{x x}+u_{y y}=0$ in the rectangle $0<x<a, 0<y<b$ with the following boundary conditions:

$$
\begin{array}{lrl}
u_{x}=-a & \text { on } x=0 & u_{x}=0 \\
\text { on } x=a \\
u_{y}=b & \text { on } y=0 & u_{y}=0
\end{array} \text { on } x=b . ~ \$
$$

(Hint: Note that the necessary condition of Exercise 6.1.11 is satisfied. A shortcut is to guess that the solution might be a quadratic polynomial in x and y.)
2. Prove that the eigenfunctions $\{\sin m y \sin n z\}$ are orthogonal on the square $\{0<y<\pi, 0<z<\pi\}$.
3. Find the harmonic function $u(x, y)$ in the square $D=\{0<x<\pi, 0<y<\pi\}$ with the boundary conditions:

$$
\begin{array}{ll}
u_{y}=0 & \text { for } y=0 \text { and for } y=\pi, \\
u=0 & \text { for } x=0, \\
u=\cos y^{2}=\frac{1}{2}(1+\cos 2 y) & \text { for } x=\pi .
\end{array}
$$

4. Find the harmonic function in the square $\{0<x<1,0<y<1\}$ with the boundary conditions $u(x, 0)=$ $x, u(x, 1)=0, u_{x}(0, y)=0, u_{x}(1, y)=y^{2}$.
5. Solve the following Neumann problem in the cube $\{0<x<1,0<y<1,0<z<1\}$: $\Delta u=0$ with $u_{z}(x, y, 1)=g(x, y)$ and homogeneous Neumann conditions on the other five faces, where $g(x, y)$ is an arbitrary function with zero average.

7(a). Find the harmonic function in the semi-infinite strip $\{0 \leq x \leq \pi, 0 \leq y<\infty\}$ that satisfies the "boundary conditions":

$$
u(0, y)=u(\pi, y)=0, u(x, 0)=h(x), \lim _{y \rightarrow \infty} u(x, y)=0 .
$$

Exercise 6.3

1. Suppose that u is a harmonic function in the disk $D=\{r<2\}$ and that $u=3 \sin 2 \theta+1$ for $r=2$. Without finding the solution, answer the following questions.
(a) Find the maximum value of u in \bar{D}.
(b) Calculate the value of u at the origin.
2. Solve $u_{x x}+u_{y y}=0$ in the disk $\{r<a\}$ with the boundary condition

$$
u=1+3 \sin \theta \quad \text { on } r=a .
$$

3. Same for the boundary condition $u=\sin ^{3} \theta$. (Hint: Use the identity $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.)

Exercise 6.4

1. Solve $u_{x x}+u_{y y}=0$ in the exterior $\{r>a\}$ of a disk, with the boundary condition $u=1+3 \sin \theta$ on $r=a$, and the condition at infinity that u be bounded as $r \rightarrow \infty$.
2. Find the harmonic function u in the semidisk $\{r<1,0<\theta<\pi\}$ with u vanishing on the diameter $(\theta=0, \pi)$ and

$$
u=\pi \sin \theta-\sin 2 \theta \quad \text { on } r=1 .
$$

10. Solve $u_{x x}+u_{y y}=0$ in the quarter-disk $\left\{x^{2}+y^{2}<a^{2}, x>0, y>0\right\}$ with the following BCs:

$$
u=0 \quad \text { on } x=0 \text { and on } y=0, \quad \text { and } \frac{\partial u}{\partial r}=1 \quad \text { on } r=a .
$$

Write the answer as an infinite series and write the first two nonzero terms explicitly.
11. Prove the uniqueness of the Robin problem

$$
\Delta u=f \text { in } D, \frac{\partial u}{\partial n}+a u=h \quad \text { on bdy } D
$$

where D is any domain in three dimensions and where a is a positive constant.
13. Solve $u_{x x}+u_{y y}=0$ in the region $\{\alpha<\theta<\beta, a<r<b\}$ with the boundary conditions $u=0$ on the two sides $\theta=\alpha$ and $\theta=\beta, u=g(\theta)$ on the arc $r=a$, and $u=h(\theta)$ on the $\operatorname{arc} r=b$.

