MATH 2040 Linear Algebra II
 2015-16 Term 2
 Review Exercise for Midterm 2

All the fields in the questions are either \mathbb{R} or \mathbb{C}.

Sec 6.1: \# 12, 23.
Sec 6.2: \# 2, 3, 17, 22.
Sec 6.3: \# 9, 19 .
Sec 6.4: \# 4, 14, 15.
Sec 6.5: \# 2, 3, 11.
Sec 6.6: \# 2.
All other questions from practice problem sets 5-9.
Some more computational exercises:

1. Verify each of the following matrices is normal. Find an unitary matrix Q such that $Q^{*} A Q$ is diagonal, or show that no such Q exists. Is it possible to find such a Q whose entries are real?
(a) $\left(\begin{array}{cc}4 i & -2 \\ 2 & i\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(d) $\left(\begin{array}{ccc}25-16 i & 0 & 12 i \\ 0 & 25+25 i & 0 \\ 12 i & 0 & 25-9 i\end{array}\right)$
2. Find a normal matrix with characteristic polynomial $t^{2}+4$ and eigenspace $E_{2 i}=\operatorname{span}\left\{\binom{1}{3 i}\right\}$.
3. Which of the following matrices have an orthonormal eigenbasis over \mathbb{R} ? Find such an basis if it exists. It is known that all these matrices have characteristic polynomial $p(t)=-t^{3}+3 t^{2}+9 t-27$.

$$
\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & 2 \\
2 & 2 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & -2 & -2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)
$$

