MATH 2040 Linear Algebra II 2015-16 Term 2 Review Exercise for Midterm 2

All the fields in the questions are either \mathbb{R} or \mathbb{C} .

Sec 6.1: # 12, 23. Sec 6.2: # 2, 3, 17, 22. Sec 6.3: # 9, 19. Sec 6.4: # 4, 14, 15. Sec 6.5: # 2, 3, 11. Sec 6.6: # 2.

All other questions from practice problem sets 5-9.

Some more computational exercises:

1. Verify each of the following matrices is normal. Find an unitary matrix Q such that Q^*AQ is diagonal, or show that no such Q exists. Is it possible to find such a Q whose entries are real?

(a)
$$\begin{pmatrix} 4i & -2\\ 2 & i \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}$
(c) $\begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{pmatrix}$
(d) $\begin{pmatrix} 25 - 16i & 0 & 12i\\ 0 & 25 + 25i & 0\\ 12i & 0 & 25 - 9i \end{pmatrix}$

2. Find a normal matrix with characteristic polynomial $t^2 + 4$ and eigenspace $E_{2i} = \text{span}\left\{ \begin{pmatrix} 1 \\ 3i \end{pmatrix} \right\}$.

3. Which of the following matrices have an orthonormal eigenbasis over \mathbb{R} ? Find such an basis if it exists. It is known that all these matrices have characteristic polynomial $p(t) = -t^3 + 3t^2 + 9t - 27$.

$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$