THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH3070 (Second Term, 2014-2015)
 Introduction to Topology
 Exercise 0 Preparation

Remarks

These exercises may give you an impression of the foundation needed in this course.

1. Write down precise and concise statements of the following.
(a) The definition of the continuity of a function $f: X \subset \mathbb{R} \rightarrow \mathbb{R}$ at a point $x_{0} \in X$.
(b) The definition of the limit of a function $f: X \subset \mathbb{R} \rightarrow \mathbb{R}$ as $x \rightarrow x_{0} \in X$.
(c) The relation between the continuity of a function $f: X \subset \mathbb{R} \rightarrow \mathbb{R}$ at $x_{0} \in X$ and a sequence $x_{n} \rightarrow x_{0} \in X$.
(d) The definition of supremum and infinum of a set $A \subset \mathbb{R}$.
(e) The definition of supremum and infinum of a subset A in a partially ordered set X.
2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z ; A \subset X, B \subset Y$; if needed, $f(A) \subset B$. Determine the correctness of the following statements. Justify with proofs or counter-examples.
(a) $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$
(b) if $B_{1} \subset B_{2}$ then $f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
(c) if $A_{1} \subset A_{2}$ then $f\left(A_{2} * A_{1}\right)=f\left(A_{2}\right) * f\left(A_{1}\right)$ where $*$ may be \cup, \cap, \backslash (set minus), or \triangle (symmetric difference).
3. Define a relation \sim on \mathbb{R}^{2} by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}^{2}-y_{1}^{2}=x_{2}^{2}-y_{2}^{2}$. Show that this is an equivalence relation. What are its equivalence classes?
4. Define a family of sets X_{α} for $\alpha \in A$ (A may be infinite). Then define the arbitrary product $\prod_{\alpha \in A} X_{\alpha}$.

If there are functions $f_{\alpha}: X_{\alpha} \rightarrow Y$, is it possible to define a function $f: \prod_{\alpha \in A} X_{\alpha} \rightarrow Y$? On the other hands, if there are functions $g_{\alpha}: U \rightarrow X_{\alpha}$, is it possible to define a function $g: U \rightarrow \prod_{\alpha \in A} X_{\alpha}$?
5. Let $A_{\alpha} \subset X$ where $\alpha \in A$. Define $\bigcup_{\alpha \in A} A_{\alpha}$ and $\bigcap_{\alpha \in A} A_{\alpha}$.

For $B \subset A$, what is the meaning of $\bigcup\left\{A_{\alpha}: \alpha \in B\right\}$? What is the meaning of all arbitrary unions of sets in $\left\{A_{\alpha}: \alpha \in A\right\}$?
6. What is a countable or uncountable set? State some propositions about countability between a set and its image under a function.
7. What are the basic requirements of an algebraic group?

