MATH 2060 Mathematical Analysis II
 HW5 suggested solution
 Lee Man Chun

P. 246 Q4:

$$
\lim _{n} x^{n}= \begin{cases}0 & \text { when } x \in[0,1) \\ 1 & \text { when } x=1 \\ +\infty & \text { when } x>1\end{cases}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}= \begin{cases}0 & \text { when } x \in[0,1) \\ \frac{1}{2} & \text { when } x=1 \\ 1 & \text { when } x>1\end{cases}
$$

P. 247 Q14:

Denote $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$ and

$$
f(x)= \begin{cases}0 & \text { when } x \in[0,1) \\ \frac{1}{2} & \text { when } x=1 \\ 1 & \text { when } x>1\end{cases}
$$

If $b \in(0,1)$, on $[0, b] \subset[0,1) . f_{n}(x)$ converge to $f(x)=0$ pointwisely on $[0, b]$. Since $\lim _{n} b^{n}=0$, for any $\epsilon>0, \exists N \in \mathbb{N}$ such that $0<b^{n}<\epsilon, \forall n>N$. Thus, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $x \in[0, b], n>N$,

$$
\left|f_{n}(x)-f(x)\right|=\frac{x^{n}}{1+x^{n}}<b^{n}<\epsilon
$$

So, the convergence is uniform on $[0, b]$. But the convergence is non-uniform on $[0,1]$. We can take $n_{k}=k, x_{k}=\left(1-\frac{1}{k}\right)$.

$$
\left|f_{k}\left(x_{k}\right)-f\left(x_{k}\right)\right|=\frac{(1-1 / k)^{k}}{1+(1-1 / k)^{k}} \rightarrow \frac{e^{-1}}{1+e^{-1}}>0, \text { as } k \rightarrow \infty
$$

Or using the theorem in the book, assume the convergence is uniform on $[0,1]$, since $\left\{f_{n}\right\}$ are all continuous function on $[0,1]$, the limit function f is also continuous. Contradiction arised.
P. 247 Q22:

For any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n>N, 1 / n<\epsilon$. Thus,

$$
\left|f_{n}(x)-f(x)\right|=\frac{1}{n}<\epsilon \text { for all } x \in \mathbb{R}, \forall n>N
$$

f_{n}^{2} converges to f^{2} poinwisely. So it suffices to show that f_{n}^{2} does not converge uniformly to f^{2} on \mathbb{R}. We take $n_{k}=k, x_{k}=k$. So,

$$
\left|f_{k}^{2}\left(x_{k}\right)-f^{2}\left(x_{k}\right)\right|=\left|\frac{2 k}{k}+\frac{1}{k^{2}}\right|>1
$$

Thus, f_{n}^{2} does not convrge uniformly on \mathbb{R}.
P. 247 Q23:

Since $\left\{f_{n}\right\},\left\{g_{n}\right\}$ are uniformly bounded, there exists $M>0$ such that

$$
\left|f_{n}(x)\right|,\left|g_{n}(x)\right| \leq M, \forall x \in A
$$

$\left\{f_{n}\right\},\left\{g_{n}\right\}$ converge uniformly to f and g respectively. So for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $x \in A, n>N$

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { and } \quad\left|g_{n}(x)-g(x)\right|<\epsilon
$$

Also,

$$
|f(x)|,|g(x)| \leq M, \forall x \in A .
$$

Thus, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $x \in A, n>N$

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & \leq\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+|g(x)|\left|f_{n}(x)-f(x)\right| \\
& <2 M \epsilon
\end{aligned}
$$

