MATH 2060 Mathematical Analysis II Tutorial Class 9 Lee Man Chun

- 1. (a) Prove that if $\{f_n\}$ be a sequence of Riemann integrable function on [a, b] and f_n converge uniformly to f on [a, b], then $f \in R[a, b]$ and $\int_a^b f = \lim_n \int_a^b f_n$.
 - (b) Let $\{f_n\}$ be a sequence of functions that converges uniformly to f on A and that satisfies $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and all $x \in A$. If g is continuous on [-M, M], show that $\{g \circ f_n\}$ converges uniformly to $g \circ f$ on A.
- 2. Given an example of sequence of Riemann integrable functions $\{f_n\}$ on [0, 1] converging pointwisely to f on [0, 1] such that

(a)
$$f \in R[0,1]$$
 but $\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 f$.

- (b) f is bounded but f is not Riemann integrable on [0, 1].
- 3. Give an example of sequence of functions (fn) on [0, 1] satisfying
 - (a) for all n, f_n is discontinuous at any point of [0,1], but f_n converge uniformly to a continuous function f on [0,1].
 - (b) $\{f_n\}$ converge pointwisely to f on [0, 1] but the convergence is not uniform on any subinterval of [0, 1].
- 4. (a) State the Bounded Convergence Theorem.
 - (b) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Give a sequence of continuous function $\{g_n\}$ on [a, b] such that $|g_n| \le 1$ on [a, b] and $\{fg_n\}$ converge pointwisely to |f| on [a, b].
 - (c) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Suppose $\int_a^b fg \leq 1$ for all continuous function g on [a, b], prove that $\int_a^b |f| \leq 1$.
- 5. Let $f_n \in C^1([a,b]), n \in \mathbb{N}$. Show that if f'_n converge uniformly to some function φ on [a,b] and there exists a point $x_0 \in [a,b]$ for which $\{f_n(x_0)\}$ converges, then the sequence of functions $\{f_n\}$ converges uniformly on [a,b] to some function $f \in C^1([a,b])$ and f'_n converges uniformly to $f' = \varphi$.