MATH 2060 Mathematical Analysis II Tutorial Class 8 Lee Man Chun

- 1. (a) Define pointwise and uniform convergence of a sequence of functions.
 - (b) Let $A \subset \mathbb{R}$ and $f_n, f : A \to \mathbb{R}$. Show that f_n does not converge uniformly to f on A if and only if there exists $\epsilon_0 > 0$, a subsequence $\{f_{n_k}\}$ and a sequence $\{x_k\}$ in A such that $|f_{n_k}(x_k) f(x_k)| \ge \epsilon_0$ for all $k \in \mathbb{N}$.
 - (c) Show that the convergence of $f_n(x) = x + \frac{x^2}{n}$ is not uniform on \mathbb{R} .
 - (d) Show that the convergence of $f_n(x) = x + \frac{nx}{1 + nx^2}$ is not uniform on $[0, \infty)$.
- 2. (a) Let $f_n, f: A \to \mathbb{R}$. Show that $\{f_n\}$ converge uniformly to f on A if and only if

$$\sup\{|f_n(x) - f(x)| : x \in A\} \to 0 \text{ as } n \to 0.$$

- (b) If each f_n is continuous on A, show that f is also continuous on A.
- (c) Show that $f_n(x) = \frac{x}{1+nx^2}$ converge uniformly on \mathbb{R} .
- 3. Let $f_n, f : A \to \mathbb{R}$. Suppose each f_n is uniformly continuous on A and $\{f_n\}$ converge uniformly to f on A.
 - (a) Show that f is uniformly continuous on A.
 - (b) Prove that for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in A$, if $|x y| < \delta$, then $|f_n(x) - f_n(y)| < \epsilon$ for all $n \in \mathbb{N}$
- 4. Let $f_n, f: [a, b] \to \mathbb{R}$ such that $\{f_n\}$ converge to f pointwisely on [a, b]. Suppose each f_n is differentiable, f is continuous and there exist M > 0 such that $|f'_n| < M$ on [a, b] for all n, prove that $\{f_n\}$ converge to f uniformly. (Pastpaper 2004-2005)