MATH 2060 Mathematical Analysis II Tutorial Class 6 Lee Man Chun

Theorem 1 (The second fundamental theorem of Calculus). Suppose that the function f: $[a,b] \to \mathbb{R}$ is continuous. Then $F(x) = \int_a^x f$ satisfy

$$F'(x) = f(x) , \forall x \in (a, b).$$

Problems :

- 1. (a) Prove the Second Fundamental Theorem of Calculus.
 - (b) State and prove the Integration by Parts formula.
 - (c) Let $f: [0, +\infty) \to \mathbb{R}$ be a continuous function. Define

$$F(x) = \int_0^x f(x^2 + y)dy.$$

Find F'(x).

2. Let $f: [a, b] \to \mathbb{R}$ be a continuous function at which $f(x) \ge 0$. Show that

$$\lim_{n \to \infty} \left(\int_a^b f^n \right)^{\frac{1}{n}} = \sup\{f(x) : x \in [a, b]\}.$$

3. Suppose that the function $f : [a, b] \to \mathbb{R}$ is continuous and it is twice differentiable on (a, b). Prove that there is a point $\eta \in (a, b)$ at which

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \left[f(a) + f(b) \right] - \frac{(b-a)^{3}}{12} f''(\eta).$$

4. (a) Suppose $f : [0, +\infty) \to \mathbb{R}$ is continuous and strictly increasing, and that $f : (0, +\infty] \to \mathbb{R}$ is differentiable and f(0) = 0. Prove that for all a > 0,

$$\int_0^a f + \int_0^{f(a)} f^{-1} = af(a).$$

(b) If f satisfies the assumption above, prove that for all a > 0 and b > 0,

$$\int_0^a f + \int_0^b f^{-1} \ge ab$$

(c) If a and b are two non-negative real number, p and q are positive real number such that $\frac{1}{p} + \frac{1}{q} = 1$, show that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$