MATH 2060 Mathematical Analysis II
 Tutorial Class 6

Lee Man Chun
Theorem 1 (The second fundamental theorem of Calculus). Suppose that the function f : $[a, b] \rightarrow \mathbb{R}$ is continuous. Then $F(x)=\int_{a}^{x} f$ satisfy

$$
F^{\prime}(x)=f(x), \forall x \in(a, b)
$$

Problems:

1. (a) Prove the Second Fundamental Theorem of Calculus.
(b) State and prove the Integration by Parts formula.
(c) Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function. Define

$$
F(x)=\int_{0}^{x} f\left(x^{2}+y\right) d y
$$

Find $F^{\prime}(x)$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function at which $f(x) \geq 0$. Show that

$$
\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}}=\sup \{f(x): x \in[a, b]\}
$$

3. Suppose that the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous and it is twice differentiable on (a, b). Prove that there is a point $\eta \in(a, b)$ at which

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\eta)
$$

4. (a) Suppose $f:[0,+\infty) \rightarrow \mathbb{R}$ is continuous and strictly increasing, and that $f:(0,+\infty] \rightarrow$ \mathbb{R} is differentiable and $f(0)=0$. Prove that for all $a>0$,

$$
\int_{0}^{a} f+\int_{0}^{f(a)} f^{-1}=a f(a)
$$

(b) If f satisfies the assumption above, prove that for all $a>0$ and $b>0$,

$$
\int_{0}^{a} f+\int_{0}^{b} f^{-1} \geq a b
$$

(c) If a and b are two non-negative real number, p and q are positive real number such that $\frac{1}{p}+\frac{1}{q}=1$, show that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

