MATH 2060 Mathematical Analysis II
 Tutorial Class 5

Lee Man Chun

1. (a) Show that if $f \in R[a, b]$, then for any sequence of tagged partition \dot{P}_{n} of $[a, b]$, $\left\|P_{n}\right\| \rightarrow 0$ implies $S\left(f, \dot{P}_{n}\right) \rightarrow \int_{a}^{b} f$ as $n \rightarrow \infty$.
(b) Find the following limits.
i. $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k+n}$.
ii. $\lim _{n \rightarrow \infty}\left[\frac{n^{2}}{n^{2}+1} \cdot \frac{n^{2}}{n^{2}+2^{2}} \cdot \frac{n^{2}}{n^{2}+3^{2}} \cdots \frac{n^{2}}{n^{2}+n^{2}}\right]^{\frac{1}{n}}$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that $g \circ f$ is Riemann integrable on $[a, b]$.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function at which $f \in R[c, b]$ for any $c>a$. Prove that $f \in R[a, b]$ and $\int_{a}^{b} f=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f$.
4. (a) Let $g \in R[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose $g \geq 0$ on $[a, b]$.

Show that there exists $c \in[a, b]$ such that $\int_{a}^{b} f g=f(c) \int_{a}^{b} g$.
(b) Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function with $\lim _{x \rightarrow \infty} f(x)=L \in \mathbb{R}$. Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are two sequence in \mathbb{R}^{+}such that $a_{n} \rightarrow 0, b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Show that for all $0<r<s$,

$$
\lim _{n \rightarrow \infty} \int_{a_{n}}^{b_{n}} \frac{f(r x)-f(s x)}{x}=(f(0)-L) \log \frac{s}{r} .
$$

5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function at which $f(x) \geq 0$. Show that

$$
\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}}=\sup \{f(x): x \in[a, b]\}
$$

