MATH 2060 Mathematical Analysis II Tutorial Class 5 Lee Man Chun

- 1. (a) Show that if $f \in R[a, b]$, then for any sequence of tagged partition $\dot{P_n}$ of [a, b], $||P_n|| \to 0$ implies $S(f, \dot{P_n}) \to \int_a^b f$ as $n \to \infty$.
 - (b) Find the following limits.

i.
$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k+n}.$$

ii.
$$\lim_{n \to \infty} \left[\frac{n^2}{n^2+1} \cdot \frac{n^2}{n^2+2^2} \cdot \frac{n^2}{n^2+3^2} \dots \frac{n^2}{n^2+n^2} \right]^{\frac{1}{n}}.$$

- 2. Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable and $g : \mathbb{R} \to \mathbb{R}$ be continuous. Show that $g \circ f$ is Riemann integrable on [a, b].
- 3. Let $f : [a, b] \to \mathbb{R}$ be a bounded function at which $f \in R[c, b]$ for any c > a. Prove that $f \in R[a, b]$ and $\int_a^b f = \lim_{c \to a^+} \int_c^b f$.
- 4. (a) Let $g \in R[a, b]$ and $f : [a, b] \to \mathbb{R}$ be a continuous function. Suppose $g \ge 0$ on [a, b]. Show that there exists $c \in [a, b]$ such that $\int_a^b fg = f(c) \int_a^b g$.
 - (b) Let $f : [0, +\infty) \to \mathbb{R}$ be a continuous function with $\lim_{x\to\infty} f(x) = L \in \mathbb{R}$. Suppose $\{a_n\}, \{b_n\}$ are two sequence in \mathbb{R}^+ such that $a_n \to 0, b_n \to \infty$ as $n \to \infty$. Show that for all 0 < r < s,

$$\lim_{n \to \infty} \int_{a_n}^{b_n} \frac{f(rx) - f(sx)}{x} = (f(0) - L) \log \frac{s}{r}.$$

5. Let $f: [a, b] \to \mathbb{R}$ be a continuous function at which $f(x) \ge 0$. Show that

$$\lim_{n \to \infty} (\int_{a}^{b} f^{n})^{\frac{1}{n}} = \sup\{f(x) : x \in [a, b]\}.$$