MATH 2060 Mathematical Analysis II Tutorial Class 2 Lee Man Chun

- 1. (a) Dene Riemann integrability of a function.
 - (b) Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable. Prove that f is bounded.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Show that f is Riemann integrable if and only if there exists exactly one value A such that

 $L(f, P) \leq A \leq U(f, P)$ for every partition P of the interval [a, b].

(d) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Show that f is Riemann integrable if and only if for all $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U(f, P) - L(f, P) < \epsilon.$$

- 2. Show that any continuous function $f:[a,b] \to \mathbb{R}$ is integrable.
- 3. Are the following functions integrable ?
 - (a) Let $f:[0,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ -x & \text{otherwise.} \end{cases}$$

(b) Let $f:[0,1] \to \mathbb{R}$.

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n}, \text{ for some } n \in \mathbb{N} \\ g(x) & \text{otherwise.} \end{cases}$$

where $g: [0,1] \to \mathbb{R}$ is a continuous function.

- 4. Suppose that a integrable function $f : [a, b] \to \mathbb{R}$ has the property that $f(x) \ge 0, \forall x \in [a, b]$. Prove that $\int_{b}^{a} f \ge 0$.
- 5. If $f:[a,b] \to \mathbb{R}$ is a integrable function and $f(x) = C, \ \forall x \in \mathbb{Q} \cap [0,1]$. Find $\int_b^a f$.