MATH 2060 Mathematical Analysis II
 Tutorial Class 2

Lee Man Chun

1. Evaluate the Limits:
(a) $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{x-1}}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{-1}{x}}}{x}$
2. Let $I \subset \mathbb{R}$ be an open interval, let $f: I \rightarrow \mathbb{R}$ be differentiable on I, and suppose $f^{\prime \prime}(a)$ exists at $a \in I$. Show that

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

Give an example where this limit exists, but the function is not twice differentiable at a.
3. Suppose the function $f:(-1,1) \rightarrow R$ has n derivatives, and $f^{(n)}:(-1,1) \rightarrow \mathbb{R}$ is bounded. Prove that there exists $M>0$ such that $|f(x)| \leq M|x|^{n}, \forall x \in(-1,1)$ if and only if $f(0)=f^{\prime}(0)=\ldots=f^{(n-1)}(0)=0$.
4. (a) State the Taylor's theorem.
(b) Prove that $\sin x<x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$ for all $x \in(0, \pi]$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely many times differentiable function satisfying
(i) $f(x)>f(0)$ for all $x \neq 0$, and
(ii) there exists $M>0$ such that $\left|f^{(n)}(x)\right| \leq M$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.
(a) Show that there exists $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$.
(b) Prove that there exists an even number $2 k$ such that $f^{(2 k)}(0)>0$.
(c) Prove that there exists $\delta>0$ such that $f^{\prime}(y)<0<f^{\prime}(x)$ for all x, y with $-\delta<y<$ $0<x<\delta$.

