MATH 2060 Mathematical Analysis II
 Tutorial Class 2

Lee Man Chun

1. (a) State Mean Value Theorem.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function differentiable on \mathbb{R}. prove that if f^{\prime} is bounded on \mathbb{R}, then f is uniformly continuous.
(c) Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is bounded on (a, b). Show that f is bounded function.
(d) If f is uniform continuous on $[a, b]$ and differentiable on (a, b), is f^{\prime} bounded on (a, b) ? Prove or disprove it.
2. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}>0$ on (a, b), show that f is strictly increasing on $[a, b]$.
(b) Prove that $\tan x>x>\sin x>\frac{2}{\pi} x$ for all $x \in\left(0, \frac{\pi}{2}\right)$.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and differentiable on (a, b). Show that if $\lim _{x \rightarrow a} f^{\prime}(x)=A$, then $f^{\prime}(a)$ exists and equals to A.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose

$$
f(x) \leq 0 \quad \text { and } \quad f^{\prime \prime}(x) \geq 0 \quad, \forall x \in \mathbb{R}
$$

Prove that f is constant function.
4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentaible function on $(0,+\infty)$ and assume $\lim _{x \rightarrow \infty} f^{\prime}(x)=b$.
(a) Show that for any $h>0$, we have $\lim _{x \rightarrow \infty} \frac{f(x+h)-f(x)}{h}=b$.
(b) Show that if $f(x) \rightarrow a$ as $x \rightarrow \infty$, then $b=0$.
(c) Show that $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=b$.
5. (a) State the Taylor's theorem.
(b) Prove that $\sin x<x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$ for all $x \in(0, \pi]$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely many times differentiable function satisfying
(i) $f(x)>f(0)$ for all $x \neq 0$, and
(ii) there exists $M>0$ such that $\left|f^{(n)}(x)\right| \leq M$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.
(a) Show that there exists $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$.
(b) Prove that there exists an even number $2 k$ such that $f^{(2 k)}(0)>0$.
(c) Prove that there exists $\delta>0$ such that $f^{\prime}(y)<0<f^{\prime}(x)$ for all x, y with $-\delta<y<$ $0<x<\delta$.

