MATH 2060 Mathematical Analysis II Tutorial Class 2 Lee Man Chun

- 1. (a) State Mean Value Theorem.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function differentiable on \mathbb{R} . prove that if f' is bounded on \mathbb{R} , then f is uniformly continuous.
 - (c) Let $f:(a,b) \to \mathbb{R}$ be a differentiable function such that f' is bounded on (a,b). Show that f is bounded function.
 - (d) If f is uniform continuous on [a, b] and differentiable on (a, b), is f' bounded on (a, b)? Prove or disprove it.
- 2. (a) Let $f : [a,b] \to \mathbb{R}$ be a function continuous on [a,b] and differentiable on (a,b). If f' > 0 on (a,b), show that f is strictly increasing on [a,b].
 - (b) Prove that $\tan x > x > \sin x > \frac{2}{\pi}x$ for all $x \in (0, \frac{\pi}{2})$.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Show that if $\lim_{x\to a} f'(x) = A$, then f'(a) exists and equals to A.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Suppose

$$f(x) \le 0$$
 and $f''(x) \ge 0$, $\forall x \in \mathbb{R}$.

Prove that f is constant function.

4. Let $f:[0,\infty) \to \mathbb{R}$ be a differentiable function on $(0,+\infty)$ and assume $\lim_{x\to\infty} f'(x) = b$.

- (a) Show that for any h > 0, we have $\lim_{x \to \infty} \frac{f(x+h) f(x)}{h} = b$. (b) Show that if $f(x) \to a$ as $x \to \infty$, then b = 0.
- (c) Show that $\lim_{x \to \infty} \frac{f(x)}{x} = b$.
- 5. (a) State the Taylor's theorem. (b) Prove that $\sin x < x - \frac{x^3}{6} + \frac{x^5}{120}$ for all $x \in (0, \pi]$.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely many times differentiable function satisfying (i) f(x) > f(0) for all $x \neq 0$, and (ii) there exists M > 0 such that $|f^{(n)}(x)| \leq M$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.
 - (a) Show that there exists $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$.
 - (b) Prove that there exists an even number 2k such that $f^{(2k)}(0) > 0$.
 - (c) Prove that there exists $\delta > 0$ such that f'(y) < 0 < f'(x) for all x, y with $-\delta < y < 0 < x < \delta$.