MATH 2060 Mathematical Analysis II
 Tutorial Class 11
 Lee Man Chun

1. Show that the convergence of $\sum_{n} \sqrt{a_{n} a_{n+1}}$ does not imply the convergence of $\sum_{n} a_{n}$, even if $a_{n}>0, \forall n \in \mathbb{N}$.
2. If $\left\{a_{n}\right\}$ is a decreasing sequence of strictly positive numbers and if $\sum_{n} a_{n}$ is convergent, show that $\lim _{n \rightarrow} n a_{n}=0$.
3. If $a_{n} \neq 0$ for all $n \in \mathbb{N}$ and

$$
\limsup _{n}\left|\frac{a_{n+1}}{a_{n}}\right|=L .
$$

(a) Prove that if $L<1$, then the series $\sum a_{n}$ converges absolutely.
(b) If $\underset{n}{\lim \inf }\left|\frac{a_{n+1}}{a_{n}}\right|>1$, show that the series diverges.
4. If

$$
\limsup _{n}\left|a_{n}\right|^{1 / n}=L
$$

(a) Prove that if $L<1$, then the series $\sum a_{n}$ converges absolutely.
(b) Prove that if $L>1$, then the series $\sum a_{n}$ diverge.
(c) If $a_{n}>0$, show that

$$
\limsup _{n} a_{n}^{1 / n} \leq \underset{n}{\limsup }\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

5. Determine the convergence of following series.
(a) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$
(b) $\sum_{n=1}^{\infty}\left(1-\cos \frac{1}{n}\right)$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \log n}{2 n+3}$
(d) $\sum_{n=1}^{\infty} \frac{1+\log ^{2} n}{n \log ^{2} n}$
(e) $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$
(f) $\sum_{n=1}^{\infty} \frac{\log n}{n+\log n}$
6. Let A be the set of positive integers which do not contain the digit 9 in the decimal expansion. Prove that

$$
\sum_{a \in A} \frac{1}{a} \text { exists. }
$$

7. Find the value of $a \in \mathbb{R}$ such that the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\sin \frac{1}{n}\right)^{a}
$$

exists.

