
Suggested solution of HW7

P286, 1 a:
∑

fn =
∑ 1

x2 + n2
, x ∈ R. For any x ∈ R, we have

0 ≤ 1

x2 + n2
≤ 1

n2
, ∀ n ∈ N.

Thus, by Weierstrass M-test,
∑

fn is uniformly convergent on R.

P286, 1 c:
∑

fn =
∑

sin
( x

n2

)
, x ∈ R. Since we have for all x ∈ R,

0 ≤ | sin(
x

n2
)| ≤ | x

n2
| ,∀ n ∈ N.

Thus for all x ∈ R,
∑

fn(x) converge. But since fn(x) = sin (
x

n2
) does not converge

uniformly to 0 on R, the convergence is non-uniform. It can be checked by choosing

xk = k2, then

sin(
xk

k2
) = sin 1 > 0 ∀ k ∈ N.

P286, 1 d:
∑

fn =
∑ 1

xn + 1
, x 6= 0. For each |x| < 1,

1

xn + 1
→ 1 as n→∞.

So the series is not convergent on (−1, 1). The series is not well-defined at x = −1.

Since fn(1) = 1/2, the series is not convergent at x = 1.

For each |x| > 1, since ∣∣∣∣ xn + 1

xn+1 + 1

∣∣∣∣→ 1

|x|
< 1 as n→∞.

The series converge. The convergence is non-uniform since we can choose a sequence

{xn = 1 + 1/n} at which fn(xn)→ 1
e+1 6= 0.

P286, 6 a: By cauchy-Hadamard Theorem, radius of convergence R =
1

lim sup |an|1/n
. So for

an = 1
nn , R = +∞.

P286, 6 c: For an = nn

n! , ∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)n+1

nn
· n!

(n + 1)!
→ e as n→∞.

Since lim
n
|an|1/n = lim

n

∣∣∣∣an+1

an

∣∣∣∣, if right hand side limit exists. Thus, R =
1

e
.

P286, 6 e: For an =
(n!)2

(2n)!
, ∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)!(n + 1)!

n! n!
· (2n)!

(2n + 2)!
→ 1

4
.

As argue before, R = 4.
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P287, 16 : It is known that ∫ x

0

1

1 + y
dy = ln(1 + x) , ∀x ∈ (−1, 1).

Also, by the result of geometric series, we have

1

1 + y
=

∞∑
n=0

(−1)nyn ,∀ y ∈ (−1, 1).

If 1 > x > 0, take I = [0, x] ⊂ (−1, 1) at which it contains x. Since

|(−1)nyn| ≤ an < 1 ∀n ∈ N.

By M-test,
∑

(−1)nyn converge uniformly on I. Thus,∫ x

0

1

y + 1
dy =

∫ x

0

∞∑
n=0

(−1)nyn dy =

∞∑
n=0

(−1)n
∫ x

0

yn dy

=

∞∑
n=0

(−1)n
xn+1

n + 1

=

∞∑
n=1

(−1)n+1x
n

n
.

The case of x < 0 is similar.

P287, 17 : If x ∈ (−1, 1), we consider the case of x > 0 first. Noted that

arctanx =

∫ x

0

1

t2 + 1
dt.

By mean of geometric series, we have for all x ∈ (−1, 1),

∞∑
n=0

(−1)nx2n =
1

x2 + 1
.

Given x ∈ [0,−1) fixed, for all t ∈ [0, x],

|t2n| ≤ |x|2n

at which
∑

x2n converge. By M-test,
∑

(−1)nt2n converge uniformly on [0, x] which

implies

arctanx =

∫ x

0

1

t2 + 1
dt =

∫ x

0

∞∑
n=0

(−1)nt2n dt

=

∞∑
n=0

(−1)n
∫ x

0

t2n dt

=

∞∑
n=0

(−1)n
x2n+1

2n + 1
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P287, 17 : Formally, we have for all x ∈ R,∫ x

0

exp(−t2)dt =

∫ x

0

∞∑
n=0

(−t2)n

n!
dt

=

∞∑
n=0

∫ x

0

(−t2)n

n!
dt

=

∞∑
n=0

(−1)n

n!

∫ x

0

t2n dt

=

∞∑
n=0

(−1)n

n!

x2n+1

2n + 1
.

The first equality holds since the radius of convergence of exp function is +∞. It

remains to check wether the second equality holds or not. It suffices to check that∑ (−1)nt2n

n!
converge uniformly on [0, x] (or [x, 0]) for each x > 0 (or x < 0). Since

for any t ∈ [0, x], n ∈ N, ∣∣∣∣ t2nn!

∣∣∣∣ ≤ ∣∣∣∣x2n

n!

∣∣∣∣ .
And

∑ x2n

n!
converges. It can be checked by ratio test as

| n!

(n + 1)!
· x

2n+2

x2n
| → 0 as n→∞.
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