Suggested solution of HW7

P286, 1 a: $\sum f_{n}=\sum \frac{1}{x^{2}+n^{2}}, x \in \mathbb{R}$. For any $x \in \mathbb{R}$, we have

$$
0 \leq \frac{1}{x^{2}+n^{2}} \leq \frac{1}{n^{2}}, \forall n \in \mathbb{N}
$$

Thus, by Weierstrass M-test, $\sum f_{n}$ is uniformly convergent on \mathbb{R}.
P286, 1 c: $\sum f_{n}=\sum \sin \left(\frac{x}{n^{2}}\right), x \in \mathbb{R}$. Since we have for all $x \in \mathbb{R}$,

$$
0 \leq\left|\sin \left(\frac{x}{n^{2}}\right)\right| \leq\left|\frac{x}{n^{2}}\right|, \forall n \in \mathbb{N}
$$

Thus for all $x \in \mathbb{R}, \sum f_{n}(x)$ converge. But since $f_{n}(x)=\sin \left(\frac{x}{n^{2}}\right)$ does not converge uniformly to 0 on \mathbb{R}, the convergence is non-uniform. It can be checked by choosing $x_{k}=k^{2}$, then

$$
\sin \left(\frac{x_{k}}{k^{2}}\right)=\sin 1>0 \quad \forall k \in \mathbb{N}
$$

P286, 1 d: $\sum f_{n}=\sum \frac{1}{x^{n}+1}, x \neq 0$. For each $|x|<1$,

$$
\frac{1}{x^{n}+1} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

So the series is not convergent on $(-1,1)$. The series is not well-defined at $x=-1$.
Since $f_{n}(1)=1 / 2$, the series is not convergent at $x=1$.
For each $|x|>1$, since

$$
\left|\frac{x^{n}+1}{x^{n+1}+1}\right| \rightarrow \frac{1}{|x|}<1 \quad \text { as } n \rightarrow \infty
$$

The series converge. The convergence is non-uniform since we can choose a sequence $\left\{x_{n}=1+1 / n\right\}$ at which $f_{n}\left(x_{n}\right) \rightarrow \frac{1}{e+1} \neq 0$.

P286, 6 a: By cauchy-Hadamard Theorem, radius of convergence $R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}}$. So for $a_{n}=\frac{1}{n^{n}}, R=+\infty$.

P286, 6 c: For $a_{n}=\frac{n^{n}}{n!}$,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{n+1}}{n^{n}} \cdot \frac{n!}{(n+1)!} \rightarrow e \text { as } n \rightarrow \infty
$$

Since $\lim _{n}\left|a_{n}\right|^{1 / n}=\lim _{n}\left|\frac{a_{n+1}}{a_{n}}\right|$, if right hand side limit exists. Thus, $R=\frac{1}{e}$.
P286, 6 e: For $a_{n}=\frac{(n!)^{2}}{(2 n)!}$,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!(n+1)!}{n!n!} \cdot \frac{(2 n)!}{(2 n+2)!} \rightarrow \frac{1}{4}
$$

As argue before, $R=4$.

P287, 16 : It is known that

$$
\int_{0}^{x} \frac{1}{1+y} d y=\ln (1+x), \forall x \in(-1,1)
$$

Also, by the result of geometric series, we have

$$
\frac{1}{1+y}=\sum_{n=0}^{\infty}(-1)^{n} y^{n}, \forall y \in(-1,1)
$$

If $1>x>0$, take $I=[0, x] \subset(-1,1)$ at which it contains x. Since

$$
\left|(-1)^{n} y^{n}\right| \leq a^{n}<1 \forall n \in \mathbb{N}
$$

By M-test, $\sum(-1)^{n} y^{n}$ converge uniformly on I. Thus,

$$
\begin{aligned}
\int_{0}^{x} \frac{1}{y+1} d y & =\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} y^{n} d y=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} y^{n} d y \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
\end{aligned}
$$

The case of $x<0$ is similar.
P287, 17 : If $x \in(-1,1)$, we consider the case of $x>0$ first. Noted that

$$
\arctan x=\int_{0}^{x} \frac{1}{t^{2}+1} d t
$$

By mean of geometric series, we have for all $x \in(-1,1)$,

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{x^{2}+1}
$$

Given $x \in[0,-1)$ fixed, for all $t \in[0, x]$,

$$
\left|t^{2 n}\right| \leq|x|^{2 n}
$$

at which $\sum x^{2 n}$ converge. By M-test, $\sum(-1)^{n} t^{2 n}$ converge uniformly on $[0, x]$ which implies

$$
\begin{aligned}
\arctan x=\int_{0}^{x} \frac{1}{t^{2}+1} d t & =\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} t^{2 n} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{2 n} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

P287, 17 : Formally, we have for all $x \in \mathbb{R}$,

$$
\begin{aligned}
\int_{0}^{x} \exp \left(-t^{2}\right) d t & =\int_{0}^{x} \sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!} d t \\
& =\sum_{n=0}^{\infty} \int_{0}^{x} \frac{\left(-t^{2}\right)^{n}}{n!} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{x} t^{2 n} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2 n+1}}{2 n+1} .
\end{aligned}
$$

The first equality holds since the radius of convergence of \exp function is $+\infty$. It remains to check wether the second equality holds or not. It suffices to check that $\sum \frac{(-1)^{n} t^{2 n}}{n!}$ converge uniformly on $[0, x]$ (or $[x, 0]$) for each $x>0$ (or $x<0$). Since for any $t \in[0, x], n \in \mathbb{N}$,

$$
\left|\frac{t^{2 n}}{n!}\right| \leq\left|\frac{x^{2 n}}{n!}\right|
$$

And $\sum \frac{x^{2 n}}{n!}$ converges. It can be checked by ratio test as

$$
\left|\frac{n!}{(n+1)!} \cdot \frac{x^{2 n+2}}{x^{2 n}}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

