Suggested solution of HW7

P. 270 Q7: (a) $\sum a_{n}$ is absolutely convergent and b_{n} is bounded. Then there exists $M>0$ such that

$$
\left|b_{n}\right| \leq M \quad \text { for all } \quad n \in \mathbb{N}
$$

And there exists $C>0$ such that for all $p \in \mathbb{N}$, we have

$$
\sum_{n=1}^{p}\left|a_{n}\right| \leq C
$$

Thus, for any $p \in \mathbb{N}$,

$$
\sum_{n=1}^{p}\left|a_{n}\right|\left|b_{n}\right| \leq M \sum_{n=1}^{p}\left|a_{n}\right| \leq C M .
$$

By monotone convergence theorem, $\sum a_{n} b_{n}$ is absolutely convergent.
(b) Take $a_{n}=\frac{(-1)^{n}}{n}, b_{n}=(-1)^{n}$,

Then $\sum a_{n}$ is conditional convergent, b_{n} is bounded, but $\sum a_{n} b_{n}$ is harmonic series which is divergent.
P. 270 Q9:

If $\left\{a_{n}\right\}$ is a decreasing sequence of strictly positive numbers and if $\sum a_{n}$ is convergent, show that $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Let $\epsilon>0$ be given, by cauchy criterion, there exists $N \in \mathbb{N}$ such that for all $m \geq n>$ N,

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\frac{\epsilon}{2}
$$

Take $n=N$, by the assumption, for any $m \geq N$

$$
0<(m-N+1) a_{m} \leq \sum_{k=N}^{m} a_{k}<\frac{\epsilon}{2}
$$

which implies $0<m a_{m}<\epsilon / 2+(N-1) a_{m}$. Since $a_{n} \rightarrow 0$ as n goes to infinity. We can find $N^{\prime}=N^{\prime}(N, \epsilon)$ such that for all $n>N^{\prime}$,

$$
0<a_{n}<\frac{\epsilon}{2(N-1)}
$$

Thus, for all $m>N^{\prime}+N=\bar{N}$,

$$
0<m a_{m}<\epsilon / 2+(N-1) a_{m}<\epsilon
$$

P. 270 Q11:

If $\left\{a_{n}\right\}$ is a sequence such that $\lim _{n} n^{2} a_{n}$ exists. Let $l=\lim _{n} n^{2} a_{n}$.
If $l \neq 0$, there exists $N \in \mathbb{N}$ such that for all $n>N$,

$$
\frac{|l|}{2} \leq\left|n^{2} a_{n}\right| \leq 2|l|
$$

Thus, $\left|a_{n}\right| \leq \frac{2|l|}{n^{2}}$ for all $n>N$.
If $l=0$, there exists $N \in \mathbb{N}$ such that for all $n>N$,

$$
\left|a_{n}\right| \leq \frac{1}{n^{2}} .
$$

By comparison test, $\sum a_{n}$ converges absolutely.
P. 276 Q4a:

Noted that $e>2.7$, we have

$$
2^{n} e^{-n}<\left(\frac{2}{2.7}\right)^{n} .
$$

Since $\sum_{n=1}^{\infty}\left(\frac{2}{2.7}\right)^{n}$ converges. By comparison test, $\sum 2^{n} e^{-n}$ converges.
P. 276 Q4c:

Let $x_{n}=e^{-\ln n}=\frac{1}{n}$,

$$
\sum \frac{1}{n} \rightarrow+\infty
$$

Thus, the series diverges.
P. 281 Q14:

It is given that the partial sum $s_{n}=\sum_{k=1}^{n} a_{k}$ satisfy $\left|s_{n}\right| \leq M n^{r}$ for some $r<1$. By Abel's Lemma, if $m>n$, then

$$
\sum_{k=n+1}^{m} \frac{a_{k}}{k}=\left(\frac{s_{m}}{m}-\frac{s_{n}}{n+1}\right)+\sum_{k=n+1}^{m-1} \frac{s_{k}}{k(k+1)} .
$$

Since $\left|s_{n}\right| \leq M n^{r}$ for all n,

$$
\left|\frac{s_{m}}{m}\right| \leq \frac{M}{m^{1-r}} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

Thus, for any $\epsilon>0$, we can find a $N \in \mathbb{N}$ such that for all $m, n>N$

$$
\left(\frac{s_{m}}{m}-\frac{s_{n}}{n+1}\right)<\epsilon
$$

Besides,

$$
\sum_{k=n+1}^{m-1}\left|\frac{s_{k}}{k(k+1)}\right| \leq M \sum_{k=n+1}^{m-1} \frac{k^{r}}{k(k+1)} \leq M \sum_{k=n+1}^{m-1} \frac{1}{k^{2-r}}
$$

where $2-r>1$. Since $\sum \frac{1}{n^{2-r}}$ converges, for all $\epsilon>0$, there exists N^{\prime} such that for all $m, n>N$,

$$
M \sum_{k=n+1}^{m-1} \frac{1}{k^{2-r}}<\epsilon
$$

Thus, by cauchy criterion, the series $\sum \frac{a_{n}}{n}$ converges.

