Suggested solution of HW6

P. 252 Q6:
$f_{n}(x)=\frac{1}{(1+x)^{n}}$ for $x \in[0,1]$.
If $x=0$, then $f_{n}(0)=1$ for all $n \in \mathbb{N}$. Thus $\lim _{n \rightarrow \infty} f_{n}(0) \rightarrow 1$.
If $x \in(0,1], \frac{1}{1+x}<1$. Thus $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. So we obtain the pointwise limit function $f:[0,1] \rightarrow \mathbb{R}$ at which

$$
f(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x \in(0,1] .\end{cases}
$$

However, the convergence is non-uniform. We choose a sequence $\left\{x_{n}\right\} \subset[0,1]$ by $x_{n}=\frac{1}{n}$.

$$
f_{n}\left(x_{n}\right)=\left(1+\frac{1}{n}\right)^{-n} \rightarrow \frac{1}{e}>0 \quad \text { as } n \rightarrow \infty .
$$

P. 253 Q9: $f_{n}(x)=\frac{x^{n}}{n}$ for $x \in[0,1]$. It is clear that f_{n} converges to $f=0$ on $[0,1]$ uniformly.

As for all $x \in[0,1]$,

$$
0 \leq f_{n}(x)=\frac{x^{n}}{n} \leq \frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

On the other hand, $f_{n}^{\prime}(x)=x^{n-1}$ for $x \in[0,1]$. For $x \in[0,1), \lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=0$ and $f_{n}^{\prime}(1)=1, \forall n \in \mathbb{N}$. Thus $g(1)=1$ but $f^{\prime}(1)=0$.
P. 253 Q12:

$$
0 \leq \int_{1}^{2} \exp \left(-n x^{2}\right) \leq \int_{1}^{2} \exp (-n)=e^{-n}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int_{1}^{2} \exp \left(-n x^{2}\right)=0
$$

P. 253 Q17: For all n,

$$
f_{n}(x)= \begin{cases}1 & \text { if } x \in(0,1 / n) \\ 0 & \text { if } x \in[1 / n, 1] \cup\{0\} .\end{cases}
$$

Clearly, f_{n} is a discontinuous function. Let $c \in[0,1], n \in \mathbb{N}$,

$$
\begin{cases}f_{n+1}(c)=1=f_{n}(c) & \text { if } c \in\left(0, \frac{1}{n+1}\right) \\ f_{n+1}(c)=0 \leq 1=f_{n}(c) & \text { if } c \in\left[\frac{1}{n+1}, \frac{1}{n}\right) \\ f_{n+1}(c)=0=f_{n}(c) & \text { if } c \in\left[\frac{1}{n}, 1\right] \cup\{0\} .\end{cases}
$$

Thus, it is a decreaseing sequence. It can also be seen from above that $f_{n}(c) \rightarrow 0$ as n goes to infinity for any $c \in[0,1]$. However, the convergence is not uniform. To see this, we can consider a sequence $\left\{x_{n}\right\} \subset[0,1]$ at which $x_{n}=\frac{1}{2 n}$.

$$
f_{n}\left(x_{n}\right)=1 \quad, \forall n \in \mathbb{N}
$$

