Suggested solution of HW4

P.215 Q17:

f is continuous function on [a, b]. Since f(x) > 0 on [a, b], by max-min theorem, there exists $m = \inf\{f(x) : x \in [a, b]\}$ and $M = \sup\{f(x) : x \in [a, b]\}$ such that

$$m \le f(x) \le M \quad \forall x \in [a, b].$$

So, we have

$$m\int_{a}^{b}g \leq \int_{a}^{b}fg \leq M\int_{a}^{b}g.$$

Now, we check that $\int_a^b g > 0$. By max-min theorem, there exists $c \in [a, b]$ such that $g(c) = m' = \inf\{g(x) : x \in [a, b]\} > 0$, $g(x) \ge m'$ for all $x \in [a, b]$. By ordering property of Riemann integral, we have

$$\int_{a}^{b} g \ge \int_{a}^{b} m' = (b - a)m' > 0.$$

Thus, we have

$$m \le \frac{\int_a^b fg}{\int_a^b g} \le M.$$

Apply intermediate value theorem to f, there exists $c' \in [a, b]$ such that $\frac{\int_a^b fg}{\int_a^b g} = f(c')$. Noted that g(x) > 0 is essential. If we choose g(x) = 1 - x, $x \in [0, 2]$, f(x) = 1 + x, $x \in [0, 2]$, it is clear that

$$\int_0^2 fg > 0 \quad \text{and} \quad f(c) \int_0^2 g = 0, \forall \ c \in [0,2].$$

P.225 Q21:

(a) Let $t \in \mathbb{R}$ be given, $(tf \pm g)^2 \ge 0$ for all $x \in [a, b]$. By ordering properties of Riemann integral, we have

$$\int_{a}^{b} (tf \pm g)^{2} \ge \int_{a}^{b} 0 = 0.$$

(b) By part (a), we have

$$\int_{a}^{b} (t^{2}f^{2} \pm 2tfg + g^{2}) \ge 0 \quad , \forall t \in \mathbb{R}.$$

Since $f, g \in R[a, b]$, it follows that $f^2, g^2, fg \in R[a, b]$. Thus,

$$t\int_{a}^{b}f^{2} + \frac{1}{t}\int_{a}^{b}g^{2} \ge 2\left|\int_{a}^{b}fg\right| \quad , \forall t > 0.$$

(c) If $\int_{a}^{b} f^{2} = 0$, part (b) implies that

$$\frac{1}{t} \int_{a}^{b} g^{2} \ge 2 \left| \int_{a}^{b} fg \right| \quad , \forall t > 0.$$

Letting $t \to +\infty$, we get $\int_a^b fg = 0$.

(d) By considering the function |f|, |g|, we can assume f, g are non-negative function on [a, b].

If
$$\int_a^b f^2 = 0$$
, $\int_a^b fg = 0$ by the result of part(c). So,
 $(\int_a^b fg)^2 \le (\int_a^b f^2) (\int_a^b g^2)$ holds.

If $\int_{a}^{b} f^{2} > 0$, since we have

$$t^2 \int_a^b f^2 + 2t \int_a^b fg + \int_a^b g^2 \ge 0 \quad , \forall t \in \mathbb{R}$$

By testing the discriminant of a quadratic equation, we obtain

$$D = \left(2\int_a^b fg\right)^2 - 4\left(\int_a^b f^2\right)\left(\int_a^b g^2\right) < 0.$$

Result follows.