Suggested solution of HW4

P. 215 Q17:
f is continuous function on $[a, b]$. Since $f(x)>0$ on $[a, b]$, by max-min theorem, there exists $m=\inf \{f(x): x \in[a, b]\}$ and $M=\sup \{f(x): x \in[a, b]\}$ such that

$$
m \leq f(x) \leq M \quad \forall x \in[a, b] .
$$

So, we have

$$
m \int_{a}^{b} g \leq \int_{a}^{b} f g \leq M \int_{a}^{b} g
$$

Now, we check that $\int_{a}^{b} g>0$. By max-min theorem, there exists $c \in[a, b]$ such that $g(c)=m^{\prime}=\inf \{g(x): x \in[a, b]\}>0, g(x) \geq m^{\prime}$ for all $x \in[a, b]$. By ordering property of Riemann integral, we have

$$
\int_{a}^{b} g \geq \int_{a}^{b} m^{\prime}=(b-a) m^{\prime}>0
$$

Thus, we have

$$
m \leq \frac{\int_{a}^{b} f g}{\int_{a}^{b} g} \leq M
$$

Apply intermediate value theorem to f, there exists $c^{\prime} \in[a, b]$ such that $\frac{\int_{a}^{b} f g}{\int_{a}^{b} g}=f\left(c^{\prime}\right)$.
Noted that $g(x)>0$ is essential. If we choose $g(x)=1-x, x \in[0,2], f(x)=1+x, x \in$ $[0,2]$, it is clear that

$$
\int_{0}^{2} f g>0 \quad \text { and } \quad f(c) \int_{0}^{2} g=0, \forall c \in[0,2]
$$

P. 225 Q21:
(a) Let $t \in \mathbb{R}$ be given, $(t f \pm g)^{2} \geq 0$ for all $x \in[a, b]$. By ordering properties of Riemann integral, we have

$$
\int_{a}^{b}(t f \pm g)^{2} \geq \int_{a}^{b} 0=0
$$

(b) By part (a), we have

$$
\int_{a}^{b}\left(t^{2} f^{2} \pm 2 t f g+g^{2}\right) \geq 0 \quad, \forall t \in \mathbb{R}
$$

Since $f, g \in R[a, b]$, it follows that $f^{2}, g^{2}, f g \in R[a, b]$. Thus,

$$
t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2} \geq 2\left|\int_{a}^{b} f g\right| \quad, \forall t>0
$$

(c) If $\int_{a}^{b} f^{2}=0$, part (b) implies that

$$
\frac{1}{t} \int_{a}^{b} g^{2} \geq 2\left|\int_{a}^{b} f g\right| \quad, \forall t>0
$$

Letting $t \rightarrow+\infty$, we get $\int_{a}^{b} f g=0$.
(d) By considering the function $|f|,|g|$, we can assume f, g are non-negative function on $[a, b]$.
If $\int_{a}^{b} f^{2}=0, \int_{a}^{b} f g=0$ by the result of $\operatorname{part}(\mathrm{c})$. So,

$$
\left(\int_{a}^{b} f g\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right) \quad \text { holds }
$$

If $\int_{a}^{b} f^{2}>0$, since we have

$$
t^{2} \int_{a}^{b} f^{2}+2 t \int_{a}^{b} f g+\int_{a}^{b} g^{2} \geq 0 \quad, \forall t \in \mathbb{R}
$$

By testing the discriminant of a quadratic equation, we obtain

$$
D=\left(2 \int_{a}^{b} f g\right)^{2}-4\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right)<0
$$

Result follows.

