Suggested solution of HW3

P. 215 Q2:

Let $P: 0=x_{0}<x_{1}<\ldots<x_{n}=1$ be a partition on $[0,1]$. On each interval $\left[x_{i}, x_{i+1}\right]$, since \mathbb{Q} is dense in $\mathbb{R}, M_{i}=x_{i+1}+1>1$ and $m_{i}=0$.
So, we have

$$
\begin{aligned}
& U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x_{i}>\sum_{i=1}^{n} \Delta x_{i}=1 . \\
& L(f, P)=\sum_{i=1}^{n} m_{i} \Delta x_{i}=0 .
\end{aligned}
$$

Hence, h is not Riemann integrable as

$$
\sup _{P} L(f, P)=0<1 \leq \inf _{P} U(f, P) .
$$

P. 215 Q8:

Suppose not, there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>0$. By continuity of f, there exists $\delta>0$ such that

$$
f(x)>\frac{f\left(x_{0}\right)}{2}, \forall\left|x-x_{0}\right|<\delta \text { and } x \in[a, b] .
$$

Let $I=[a, b] \cap V_{\delta}\left(x_{0}\right)$, without loss of generality, we can assume δ small enough such that $|I| \geq \delta$.

$$
0=\int_{a}^{b} f \geq \int_{I} f>\frac{f\left(x_{0}\right)}{2}|I|>0 .
$$

Contradiction arise.
P. 215 Q18:

By Max-Min theorem, there exists $c \in[a, b]$ such that $f(c)=M=\sup \{f(x): x \in$ $[a, b]\}$. Let $\epsilon>0$ be given, there exists $\delta>0$ such that

$$
M \geq f(x)>M-\epsilon, \forall|x-c|<\delta \text { and } x \in[a, b] .
$$

Let $I=[a, b] \cap V_{\delta}(c)$, without loss of generality, we can assume δ small enough such that $|I| \geq \delta$. For any $n \in \mathbb{N}$,

$$
(M-\epsilon) \delta^{\frac{1}{n}}<\left(\int_{I} f^{n}\right)^{\frac{1}{n}} \leq\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}} \leq M(b-a)^{\frac{1}{n}} .
$$

Since, $\delta^{\frac{1}{n}}$ and $(b-a)^{\frac{1}{n}}$ goes to 1 , as n goes to infinity. We have

$$
M-\epsilon \leq \liminf _{n}\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}} \leq \limsup _{n}\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}} \leq M .
$$

The above inequality hold for any fixed $\epsilon>0$ which imply

$$
\lim _{n}\left(\int_{a}^{b} f^{n}\right)^{\frac{1}{n}}=M .
$$

