Suggested solution of HW2

P. 180 Q19:

Let $\epsilon>0$ be given, there exists $\delta>0$ such that if $0<|x-y|<\delta$ and $x, y \in I=[a, b]$, then

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(x)\right|<\epsilon / 2 .
$$

Interchange x and y, we obtain

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(y)\right|<\epsilon / 2 .
$$

So if $0<|x-y|<\delta$ and $x, y \in I=[a, b]$,

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(x)\right|+\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(y)\right|<\epsilon .
$$

So, f^{\prime} is uniformly continuous.
P. 187 Q3:

Let $\epsilon>0$, there exists $\delta=\sqrt{\epsilon}>0$ such that if $|x|<\delta$, then

$$
|g(x)|=x^{2}<\delta^{2}=\epsilon .
$$

Since

$$
|f(x)|=x^{2}\left|\sin \frac{1}{x}\right| \leq x^{2}, \forall x \in \mathbb{R}
$$

By squeeze theorem and above result, $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)$. Now we show that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. Choose two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ at which

$$
a_{n}=\frac{1}{2 \pi n} \quad \text { and } \quad b_{n}=\frac{1}{2 \pi n+\pi / 2} .
$$

Both sequences converge to 0 but

$$
\frac{f\left(a_{n}\right)}{g\left(a_{n}\right)}=\sin 2 \pi n=0 \quad \text { and } \quad \frac{f\left(b_{n}\right)}{g\left(b_{n}\right)}=\sin (2 \pi n+\pi / 2)=1 .
$$

It contradicts with the sequence criterion. So the limit doesn't exist.
P. 196 Q4:

Let $f:[0,+\infty) \rightarrow \mathbb{R}$ by $f(x)=\sqrt{1+x}$. Noted that f is twice differentiable on $(0,+\infty)$. By Taylor's theorem, for all $x>0$ there exists $c \in(0, x)$ such that

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(c)}{2} x^{2} .
$$

By usual computation, $f(0)=1, f^{\prime}(0)=\frac{1}{2}$ and $f^{\prime \prime}(c)=-\frac{1}{4(1+c)^{3 / 2}}$ which implies

$$
1+\frac{1}{2} x-\frac{1}{8} x^{2} \leq f(x) \leq 1+\frac{1}{2} x .
$$

