THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS
 MATH1520C University Mathematics for Applications Suggested Solution to Assignment 4

Ex 5.6: 11. Find the volume of the solid formed by rotating the region R about the x -axis. R is the region under the curve $y=\sqrt{4-x^{2}}$ from $x=-2$ to $x=2$

Solution: Since $y=\sqrt{4-x^{2}}$ is an even function, the volume of the solid formed by rotating the region R about x -axis is

$$
V=2 \int_{0}^{2} \pi\left(\sqrt{4-x^{2}}\right)^{2} d x=\left.2 \pi\left(4 x-\frac{x^{3}}{3}\right)\right|_{0} ^{2}=\frac{32 \pi}{3}
$$

Ex 5.6: 31 GROWTH OF AN ENDANGERED SPECIES Environmentalists estimate that the population of a certain endangered species is currently 3,000 . The population is expected to be growing at the rate of $R(t)=10 e^{0.01 t}$ individuals per year t years from now, and the fraction that survive t years is given by $S(t)=e^{-0.07 t}$. What will the population of the species be in 10 years?

Solution: To approximate the number of new individuals which will survive 10 years from now, divide the interval $0 \leq t \leq 10$ into n equal subintervals of length Δt. Moreover $t_{j}=j \times \Delta t$ and the j-th interval is $\left[t_{j}, t_{j+1}\right]$. The new individuals grown in the j-th interval is $R\left(t_{j}\right) S\left(10-t_{j}\right) \Delta t$. Therefore the new individuals grown in the 10 years can be approximated by

$$
\sum_{j=1}^{n} 10 e^{0.01 t_{j}} e^{-0.07\left(10-t_{j}\right)} \Delta t
$$

which implies the population of the species in 10 years can be approximated by

$$
P \approx 3000 S(10)+\sum_{j=1}^{n} 10 e^{0.01 t_{j}} e^{-0.07\left(10-t_{j}\right)} \Delta t
$$

Therefore

$$
\begin{aligned}
P(10) & =3000 S(10)+10 e^{-0.7} \int_{0}^{10} e^{0.08 t} d t \\
& =3000 e^{-0.7}+\left.10 e^{-0.7}\left(\frac{e^{0.08 t}}{0.08}\right)\right|_{0} ^{10} \\
& \approx 1565.83(1566)
\end{aligned}
$$

Since the number of species should be integer, the population should be 1566 individuals.

Ex 6.1: 35 . Use the table of integrals (Table 6.1) to find the integral of $\int(\ln x)^{3} d x$.

Solution:

$$
\begin{aligned}
\int(\ln x)^{3} d x & =x(\ln x)^{3}-3 \int(\ln x)^{2} d x \\
& =x(\ln x)^{3}-3\left(x(\ln x)^{2}-2 \int \ln x d x\right) \\
& =x(\ln x)^{3}-3 x(\ln x)^{2}+6\left(x \ln x-\int 1 d x\right) \\
& =x(\ln x)^{3}-3(\ln x)^{2}+6 x \ln x-6 x+C
\end{aligned}
$$

Ex 9.1: 25. Find the particular solution of the differential equation satisfying the indicated condition.

$$
\frac{d y}{d x}=y^{2} \sqrt{4-x} ; y=2 \text { when } \mathrm{x}=4
$$

Solution: Since $\frac{d y}{d x}=y^{2} \sqrt{4-x}$,

$$
\int \frac{1}{y^{2}} d y=\int \sqrt{4-x} d x
$$

That is

$$
-\frac{1}{y}=-\frac{2}{3}(4-x)^{\frac{3}{2}}+C
$$

Since $y=2$ when $x=4$

$$
\frac{1}{2}=C
$$

Therefore the particular solution is

$$
y=\frac{1}{\frac{2}{3}(4-x)^{\frac{3}{2}}+\frac{1}{2}}=\frac{6}{4(4-x)^{\frac{3}{2}}+3}
$$

Ex 9.2: 5,7. In Exercise 5 and 7, find the general solution of the given first-order linear differential equation.
5. $x^{2} \frac{d y}{d x}+x y=2$

Solution: This differential equation can be rewritten as $\frac{d y}{d x}+\frac{y}{x}=\frac{2}{x^{2}}$. Therefore the integral factor is

$$
e^{\int x^{-x} d x}=x
$$

The general solution is

$$
y=\frac{1}{x}\left[\int x \cdot \frac{2}{x^{2}} d x+C\right]=\frac{2 \ln |x|+C}{x}
$$

7. $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}$

Solution: The integral factor is $I(x)=e^{\int \frac{2 x+1}{x}} d x=x e^{2 x}$. The general solution is

$$
y=\frac{1}{x e^{2 x}}\left[\int x e^{2 x} \cdot e^{-2 x} d x+C\right]=\frac{x^{2}+2 C}{2 x e^{2 x}}
$$

Note that $2 C$ or C are of same meaning, so both of them are right.

