THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1520C University Mathematics for Applications 2015
 Suggested Solution to Assignment 1

Chapter1.5:23 Ans: $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+3 x+2}=\lim _{x \rightarrow-2} \frac{(x-3)(x+2)}{(x+2)(x+1)}=\lim _{x \rightarrow-2} \frac{x-3}{x+1}=\frac{-5}{-1}=5$

Chapter1.5:25 Ans: $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}$

Chapter1.5:59 Ans:
a. $C(0)=0.4+0.013=0.413 \mathrm{mg} / \mathrm{ml}$
b. $C(5)-C(4)=\frac{0.4}{5^{1.2}+1}-\frac{0.4}{4^{1.2}+1} \approx-0.013$. Therefore the concentration decreases by about $0.013 \mathrm{mg} / \mathrm{ml}$.
c. $\lim _{t \rightarrow \infty} C(t)=0.013$. Therefore the residual concentration is $0.013 \mathrm{mg} / \mathrm{ml}$.

Chapter1.6:27 Ans: By definition $f(3)=10$. And

$$
\lim _{x \rightarrow 3^{-}} f(x)=10 \quad \lim _{x \rightarrow 3^{+}} f(x)=10
$$

$\Longrightarrow \lim _{x \rightarrow 3} f(x)=10=f(3)$.Therefore $f(x)$ is continuous at $x=3$.
Chapter1.6:57 Ans:By the definition $f(2)=9$ and $\lim _{x \rightarrow 2^{-}} f(x)=2 A-3=f(2)$ since f is continuous at $x=2$. $\Longrightarrow A=6$
1 Ans: $\lim _{x \rightarrow+\infty} \frac{e^{x}-2}{e^{2 x}-4}=\lim _{x \rightarrow+\infty} \frac{\frac{e^{x}-2}{e^{2 x}}}{\frac{e^{2 x}-4}{e^{2 x}}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{e^{x}}-\frac{2}{e^{2 x}}}{1-\frac{4}{e^{2 x}}}=\frac{0+0}{1-0}=0$

2 Ans:
(a) By definition, $f(0)=0$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 1=1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} e^{2 x}=1$
Since $\lim _{x \rightarrow 0^{-}} f(x)=1=\lim _{x \rightarrow 0^{+}} f(x)$, we have $\lim _{x \rightarrow 0} f(x)=1$
(c) Since $\lim _{x \rightarrow 0} f(x)=1 \neq f(0), \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=0$.

