Hints for Assmt 4

Exercise

1. (An illustration of the 'Method of Finding Limit Using Taylor's Theorem)
Question. Find the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\tan x-\sin x}{\sin ^{2} x} \tag{1}
\end{equation*}
$$

Solution: Many ways to do it. We just mention the Taylor's Theorem Approach. If we use Taylor's Theorem, we use the approximation

$$
\begin{equation*}
\tan x-\sin x \sim \frac{1}{2} x^{3}, \tag{2}
\end{equation*}
$$

when $x \rightarrow 0$.
(which can be made rigorous but I don't do it now!)
Roughly speaking, in the above approximation (i.e. formula (1)), we are expanding the function about the center $c=0$ up to the degree 3 term!

Remark Note that if we use Taylor's Theorem on $\tan x-\sin x$ (i.e. formula (2)) about the center $c=0$, we don't have the degree 0 (i.e. 'constant') term, the degree 1 term and the degree 2 term (i.e. the x and the x^{2} terms). They all have coefficients equal to zero! Thus, the first non-zero term of the Taylor's Polynomial (centered at 0) is

$$
\frac{1}{2} x^{3}
$$

Similarly,

$$
\sin x \sim x(\text { when } x \rightarrow 0),
$$

(Again, this can be made rigorous, which I will discuss at another time)

Then, we can compute the limit by

$$
\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x}=\lim _{x \rightarrow 0} \frac{\frac{1}{2} x^{3}}{x^{3}}=\frac{1}{2}
$$

2. A good idea to find Taylor polynomial without differentiating a lot is to make use of
(i) $\frac{1}{1-x}=1+x+x^{2}+\cdots$
or
(ii) 'long-division'. For example

$$
\frac{x-1}{x^{2}+1}=-1+x+x^{2}-x^{3}-x^{4}+\cdots
$$

This can be seen using 'long-division' as follows:

$$
\begin{aligned}
& -1+x+x^{2}-x^{3}-x^{4} \ldots \\
& 1+0 x+x^{2} \quad-1+1 x+0 x^{2}+0 x^{3}+\cdots \\
& -1+0 x-x^{2} \\
& x+x^{2} \\
& x \quad x^{3} \\
& x^{2}-x^{3} \\
& x^{2} \quad+x^{4} \\
& -x^{3}-x^{4}
\end{aligned}
$$

Remark Of course, the approach (i) is slightly more rigorous. Approach (ii), though it is in a way 'less rigorous', let one 'see' the answer more quickly. It can also be justified if one works carefully.
3. Question 3 is very similar to our proof of the 'second derivative test'. It uses the following 'alternative way of describing the Lagrange's Mean Value Theorem'.
(LMVT)

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\xi) \cdot\left(x-x_{0}\right)
$$

for some ξ between x and the center x_{0}.

Remark The center dot, i.e. ''' means 'multiply' or 'times'. For example $a \cdot b=a \times b$.

If we denote by h the expression $x-x_{0}$, (i.e. $h=x-x_{0}$), then LMVT can be written in the form (assuming $x_{0}<x$):

$$
f(\underbrace{x_{0}+h}_{x})-f\left(x_{0}\right)=f^{\prime}(\underbrace{x_{0}+\theta \cdot h}_{\xi}) \cdot \underbrace{h}_{x-x_{0}},
$$

because now $x=x_{0}+h$, and any point ξ between x_{0} and x is given by ${ }^{\prime} x_{0}+\theta \cdot h$ ',
(where θ is a number between 0 and 1).

Now putting the term $f\left(x_{0}\right)$ to the right-hand side of the equal sign, we obtain

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}+\theta \cdot h\right) \cdot h .
$$

