MATH1010 University Mathematics 2014-2015
 Assignment 4
 Due: 14 Nov 2014 (Friday)

Answer all questions.

1. Find the Taylor polynomial of order 4 (up to the term in x^{4}) for the following function at the specific point c :
(a) $f(x)=\sqrt{x+1}$ at $c=0$
(c) $f(x)=\sin (\sin x)$ at $c=0$
(b) $f(x)=\frac{1+x+x^{2}}{1-x+x^{2}}$ at $c=0$
(d) $f(x)=x^{4}+x^{2}+1$ at $c=-2$
2. Evaluate the following limit using Taylor's Theorem:
(a) $\lim _{x \rightarrow 0} \frac{\cos x-e^{-\frac{x^{2}}{2}}}{x^{4}}$
(c) $\lim _{x \rightarrow+\infty} x^{\frac{3}{2}}(\sqrt{x+1}+\sqrt{x-1}-2 \sqrt{x})$
(b) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x(1+x)}{x^{3}}$
(d) $\lim _{x \rightarrow \infty}\left[x-x^{2} \ln \left(1+\frac{1}{x}\right)\right]$
3. Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function and $x_{0} \in(a, b)$. For any $h>0$ small, there exists $\theta \in(0,1)$, depending on h, such that

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}+\theta h\right)
$$

If f is twice differentiable at x_{0} with $f^{\prime \prime}\left(x_{0}\right) \neq 0$, prove that
(a) $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h}{h^{2}}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2}$.
(b) $\lim _{h \rightarrow 0} \theta=\frac{1}{2}$.
(Note that we do not assume that f is twice differentiable in (a, b).)

End

