MATH1010 University Mathematics 2014-2015 Assignment 4 Due: 14 Nov 2014 (Friday)

Answer all questions.

- 1. Find the Taylor polynomial of order 4 (up to the term in x^4) for the following function at the specific point c:
 - (a) $f(x) = \sqrt{x+1}$ at c = 0 (c) $f(x) = \sin(\sin x)$ at c = 0

(b)
$$f(x) = \frac{1+x+x^2}{1-x+x^2}$$
 at $c = 0$ (d) $f(x) = x^4 + x^2 + 1$ at $c = -2$

2. Evaluate the following limit using Taylor's Theorem:

(a)
$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$

(b) $\lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{x^3}$
(c) $\lim_{x \to +\infty} x^{\frac{3}{2}}(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x})$
(d) $\lim_{x \to \infty} \left[x - x^2 \ln\left(1 + \frac{1}{x}\right)\right]$

3. Let $f:(a,b) \to \mathbb{R}$ be a differentiable function and $x_0 \in (a,b)$. For any h > 0 small, there exists $\theta \in (0,1)$, depending on h, such that

$$f(x_0 + h) = f(x_0) + hf'(x_0 + \theta h).$$

If f is twice differentiable at x_0 with $f''(x_0) \neq 0$, prove that

(a)
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h^2} = \frac{f''(x_0)}{2}.$$

(b)
$$\lim_{h \to 0} \theta = \frac{1}{2}.$$

(Note that we do not assume that f is twice differentiable in (a, b).)

End