
Napier’s Constant

Theorem 1. Let

an =

(
1 +

1

n

)n

bn =
n∑

k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · · +

1

n!

Then

1. an < bn for any n > 1.

2. an and bn are convergent.

3. lim
n→∞

an = lim
n→∞

bn

Proof. 1. For any positive integer n > 1, by binomial theorem we have

an

=

(
1 +

1

n

)n

= 1 + n · 1
n
+

n(n− 1)

2!
· 1

n2
+

n(n− 1)(n− 2)

3!
· 1

n3
+ · · ·+ 1

nn

= 1 + 1 +
1

2!
· n− 1

n
+

1

3!
· (n− 1)(n− 2)

n2
+ · · ·+ 1

n!
· (n− 1) · · · 1

nn−1

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(
1− n− 1

n

)
< 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
= bn

2. We show that an and bn are bounded and monotonic.
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Boundedness: For any n > 1, we have

1 < an < bn

= 1 + 1 +
1

2!
+

1

3!
+ · · · +

1

n!

≤ 1 + 1 +
1

21
+

1

22
+ · · · +

1

2n−1

= 1 + 2

(
1 − 1

2n

)
< 3.

Thus an and bn are bounded.
Monotonicity: The monotonicity of bn is obvious. We prove that an
is strictly increasing. For any n ≥ 1, we have

an

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(
1− n− 1

n

)
< 1 + 1 +

1

2!

(
1− 1

n+ 1

)
+

1

3!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
+ · · ·

+
1

n!

(
1− 1

n+ 1

)
· · ·
(
1− n− 1

n+ 1

)
+

1

(n+ 1)!

(
1− 1

n+ 1

)
· · ·
(
1− n

n+ 1

)
= an+1.

Thus an are bn are strictly increasing.
Alternative proof for monotonicity of an: Recall that the arithmetic-
geometric mean inequality says that for any positive real numbers
x1, x2, . . . , xk, not all equal, we have

x1x2 · · ·xk <

(
x1 + x2 + · · · + xk

k

)k

.

Taking k = n + 1, x1 = 1 and xi = 1 +
1

n
for i = 2, 3, . . . , n + 1, we

have

1 ·
(

1 +
1

n

)n

<

1 + n

(
1 +

1

n

)
n + 1


n+1

(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

.
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We have proved that both an and bn are bounded and monotonic.
Therefore an are bn are convergent by monotone convergence theorem.

3. Since an < bn for any n > 1, we have

lim
n→∞

an ≤ lim
n→∞

bn.

On the other hand, for a fixed m ≥ 1, define a sequence cn (which
depends on m) by

cn = 1 + 1 +
1

2!

(
1 − 1

n

)
+

1

3!

(
1 − 1

n

)(
1 − 2

n

)
+ · · ·

+
1

m!

(
1 − 1

n

)
· · ·
(

1 − m− 1

n

)
Then for any n > m, we have an > cn which implies that

lim
n→∞

an ≥ lim
n→∞

cn

= 1 + 1 +
1

2!
lim
n→∞

(
1 − 1

n

)
+

1

3!
lim
n→∞

(
1 − 1

n

)(
1 − 2

n

)
+ · · ·

+
1

m!
lim
n→∞

(
1 − 1

n

)
· · ·
(

1 − m− 1

n

)
= 1 + 1 +

1

2!
+

1

3!
+ · · · +

1

m!
= bm.

Observe that m is arbitrary and thus

lim
n→∞

an ≥ lim
m→∞

bm = lim
n→∞

bn.

Therefore
lim
n→∞

an = lim
n→∞

bn.
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