MATH1010 University Mathematics

Department of Mathematics
The Chinese University of Hong Kong
(1) Limits

- Sequences
- Limits of sequences
- Squeeze theorem
- Monotone convergence theorem
- Limits of functions
- Limits of functions
- Exponential, logarithmic and trigonometric functions
- Continuity of functions
(2) Differentiation
- Derivatives
- Differentiable functions
- Rules of differentiation
- Second and higher derivatives
- Mean value theorem
- Mean value theorem
- Application of Differentiation
- L'Hopital's rule
- Taylor series
- Curve sketching

(3) Integration

- Integration
- Indefinite integral and substitution
- Definite integral
- Fundamental theorem of calculus
- Techniques of Integration
- Trigonometric integrals
- Integration by parts
- Reduction formula
- More Techniques of Integration
- Trigonometric substitution
- Integration of rational functions
- t-substitution

Limits of sequences

Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function from the set of positive integers $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ to the set of real numbers \mathbb{R}.

Example (Arithmetic sequence)

An arithmetic sequence is a sequence a_{n} such that $a_{n+1}-a_{n}=d$ is a constant independent of n. The constant d is called the common difference. The n-th term of the sequence is

$$
a_{n}=a_{1}+(n-1) d
$$

Sequence	a_{1}	d	a_{n}
$1,3,5,7,9, \ldots$	1	2	$a_{n}=2 n-1$
$-4,-1,2,5,8, \ldots$	-4	3	$a_{n}=3 n-7$
$19,12,5,-2,-9, \ldots$	19	-7	$a_{n}=26-7 n$

Example (Geometric sequence)

A geometric sequence is a sequence a_{n} such that $a_{n+1}=r a_{n}$ for any n where r is a constant. The constant r is called the common ratio. The n-th term of the sequence is

$$
a_{n}=a_{1} r^{n-1}
$$

Sequence	a_{1}	r	a_{n}
$1,2,4,8,16, \ldots$	1	2	$a_{n}=2^{n-1}$
$18,6,2, \frac{2}{3}, \frac{2}{9}, \ldots$	18	$\frac{1}{3}$	$a_{n}=\frac{54}{3^{n}}$
$12,-6,3,-\frac{3}{2}, \frac{3}{4}, \ldots$	12	$-\frac{1}{2}$	$a_{n}=\frac{(-1)^{n-1} 24}{2^{n}}$

Example

Let r and d be real numbers. Let $a_{n}, n=0,1,2, \cdots$, be a sequence which satisfies

$$
a_{n+1}=r a_{n}+d, \text { for } n \geq 0
$$

Then

$$
a_{n}=a_{0} r^{n}+\left(\frac{r^{n}-1}{r-1}\right) d
$$

For $a_{0}=1000, r=1.003, d=-10$, we have

n	0	1	2	3	4	5
a_{n}	1000	993	985.98	978.94	971.87	964.79
n	24	\cdots	60	\cdots	119	120
a_{n}	826.07	\cdots	540.58	\cdots	0.70	-9.30

Example (Fibonacci sequence)

The Fibonacci sequence is the sequence F_{n} which satisfies

$$
\left\{\begin{array}{l}
F_{n+2}=F_{n+1}+F_{n}, \text { for } n \geq 1 \\
F_{1}=F_{2}=1
\end{array}\right.
$$

The first few terms of F_{n} are

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

The value of F_{n} can be calculated by

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Definition (Limit of sequence)

(1) Suppose there exists real number L such that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>N$, we have $\left|a_{n}-L\right|<\epsilon$. Then we say that a_{n} is convergent, or a_{n} converges to L, and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Otherwise we say that a_{n} is divergent.
(2) Suppose for any $M>0$, there exists $N \in \mathbb{N}$ such that for any $n>N$, we have $a_{n}>M$. Then we say that a_{n} tends to $+\infty$ as n tends to infinity, and write

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

We define a_{n} tends to $-\infty$ in a similar way. Note that a_{n} is divergent if it tends to $\pm \infty$.

Example (Convergent and divergent sequence)

Sequence	Convergent	Limit
$2.9,2.99,2.999,2.9999, \ldots$	\checkmark	3
$\frac{11}{21}, \frac{101}{201}, \frac{1001}{2001}, \frac{10001}{20001}, \ldots$	\checkmark	$\frac{1}{2}$
$1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots$	\checkmark	0
$2,2,2,2,2, \ldots$	\checkmark	2
$1,0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}, \ldots$	\checkmark	0
$1,0,1,0,1,0, \ldots$	\times	-
$1,11,111,1111,11111, \ldots$	\times	$+\infty$
$1,-3,5,-7,9, \ldots$	\times	-

Example (Intuitive meaning of limits of infinite sequences)

a_{n}	First few terms	Limit
$\frac{1}{n^{2}}$	$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$	0
$\frac{n}{n+1}$	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$	1
$(-1)^{n+1}$	$1,-1,1,-1, \ldots$	does not exist
$2 n$	$2,4,6,8, \ldots$	does not exist $/+\infty$
$\left(1+\frac{1}{n}\right)^{n}$	$2, \frac{9}{4}, \frac{64}{27}, \frac{625}{256}, \ldots$	$e \approx 2.71828$
$\frac{F_{n+1}}{F_{n}}$	$1,2, \frac{3}{2}, \frac{5}{3}, \ldots$	$\frac{1+\sqrt{5}}{2} \approx 1.61803$

Definition (Monotonic sequence)

(1) We say that a_{n} is monotonic increasing (decreasing) if for any $m<n$, we have $a_{m} \leq a_{n}\left(a_{m} \geq a_{n}\right)$. We say that a_{n} is monotonic if a_{n} is either monotonic increasing or monotonic decreasing.
(2) We say that a_{n} is strictly increasing (decreasing) if for any $m<n$, we have $a_{m}<a_{n}\left(a_{m}>a_{n}\right)$.

Definition (Bounded sequence)

We say that a_{n} is bounded if there exists real number M such that $\left|a_{n}\right|<M$ for any $n \in \mathbb{N}$.

Example (Monotonicity and boundedness)

Sequence	Monotonic	Strictly monotonic	Bounded
$3,3,3,3,3, \ldots$	\checkmark	\times	\checkmark
$1,1,2,2,3,3,4,4, \ldots$	\checkmark	\times	\times
$7,-2,7,-2,7,-2, \ldots$	\times	\times	\checkmark
$2.7,2.77,2.777,2.7777, \ldots$	\checkmark	\checkmark	\checkmark
$1,0,2,0,3,0,4,0, \ldots$	\times	\checkmark	\times
$-1,-2,-3,-4, \ldots$	\checkmark	\checkmark	\times
$0.001,0.002,0.003,0.004, \ldots$	\checkmark	\checkmark	\times
$1000, \frac{1000}{2}, \frac{1000}{3}, \frac{1000}{4}, \ldots$	\checkmark		\checkmark

Example (Bounded and monotonic sequence)

a_{n}	Terms	Bounded	Monotonic	Convergent (Limit)
$\frac{1}{n^{2}}$	$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$	\checkmark	\checkmark	$\checkmark(0)$
$1-\frac{(-1)^{n}}{n}$	$2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, \ldots$	\checkmark	\times	$\checkmark(1)$
n^{2}	$1,4,9,16, \ldots$	\times	\checkmark	\times
$1-(-1)^{n}$	$2,0,2,0, \ldots$	\checkmark	\times	\times
$(-1)^{n} n$	$-1,2,-3,4, \ldots$	\times	\times	\times

Theorem

If a_{n} is convergent, then a_{n} is bounded.

Convergent \Rightarrow Bounded

Note that the converse of the above statement is not correct.

Bounded \nRightarrow Convergent

The following theorem is very important and we will discuss it in details later.

Theorem (Monotone convergence theorem)
If a_{n} is bounded and monotonic, then a_{n} is convergent.
Bounded and Monotonic \Rightarrow Convergent

Exercise (True or False)

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$. Then
$\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b$.

Answer: T

Exercise (True or False)

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and c is a real number. Then

$$
\lim _{n \rightarrow \infty} c a_{n}=c a
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then
$\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b} .
$$

Answer: F

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b \neq 0$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b} .
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=0$, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0 .
$$

Answer: F

Example

For $a_{n}=\frac{1}{n}$ and $b_{n}=n$, we have $\lim _{n \rightarrow \infty} a_{n}=0$ but

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \cdot n=\lim _{n \rightarrow \infty} 1=1 \neq 0
$$

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=0$ and b_{n} is convergent, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Answer: T

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} b_{n} & =\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n} \\
& =0
\end{aligned}
$$

Exercise (True or False)
If $\lim _{n \rightarrow \infty} a_{n}=0$ and b_{n} is bounded, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Answer: T
Caution! The previous proof does not work.

Exercise (True or False)
If a_{n} and b_{n} are divergent, then $a_{n}+b_{n}$ is divergent.

Answer: F

Example

The sequences $a_{n}=n$ and $b_{n}=-n$ are divergent but $a_{n}+b_{n}=0$ converges to 0 .

Exercise (True or False)

If $\lim _{n \rightarrow \infty} b_{n}=+\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0
$$

Answer: F

Example

For $a_{n}=n^{2}$ and $b_{n}=n$, we have $\lim _{n \rightarrow \infty} b_{n}=+\infty$ but $\frac{a_{n}}{b_{n}}=\frac{n^{2}}{n}=n$ is divergent.

Exercise (True or False)

If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}= \pm \infty$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0
$$

Answer: T

Exercise (True or False)

Suppose a_{n} and b_{n} are convergent sequences such that $a_{n}<b_{n}$ for any n. Then

$$
\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n} .
$$

Answer: F

Example

The sequences $a_{n}=0$ and $b_{n}=\frac{1}{n}$ satisfy $a_{n}<b_{n}$ for any n.
However

$$
\lim _{n \rightarrow \infty} a_{n} \nless \lim _{n \rightarrow \infty} b_{n}
$$

because both of them are 0 .

Exercise (True or False)

Suppose a_{n} and b_{n} are convergent sequences such that $a_{n} \leq b_{n}$ for any n. Then

$$
\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n} .
$$

Answer: T

Exercise (True or False)

If a_{n} is convergent, then

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0
$$

Answer: T

Exercise (True or False)
 If $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$, then a_{n} is convergent.

Answer: F

Example

Let $a_{n}=\sqrt{n}$. Then $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$ and a_{n} is divergent.

Exercise (True or False)
If $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$ and a_{n} is bounded, then a_{n} is convergent.

Answer: F

Example

$$
0, \frac{1}{2}, 1, \frac{2}{3}, \frac{1}{3}, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0, \frac{1}{6}, \frac{2}{6}, \ldots
$$

Theorem

Let a_{n}, b_{n} be two sequences such that $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$ and c be a real number. Then
(1) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b$
(2) $\lim _{n \rightarrow \infty} c a_{n}=c a$
(3) $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$
(9) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$ if $b \neq 0$.

Theorem

Let a_{n} be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=a$. Then
(1) for any positive integer $k, \lim _{n \rightarrow \infty} a_{n+k}=a$.
(2) $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$

Example

Let a be a real number.

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}0, & \text { if }-1<a<1 \\ 1, & \text { if } a=1 \\ \text { does not exist, } & \text { if } a \leq-1 \text { or } a>1\end{cases}
$$

Example

Let $a \neq 0$ and $r \neq 1$ be real numbers. Let

$$
s_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}
$$

Then

$$
s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r} \\
& = \begin{cases}\frac{a}{1-r}, & \text { if }-1<r<1 \\
\text { does not exist, } & \text { otherwise }\end{cases}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n-5}{3 n+1} & =\lim _{n \rightarrow \infty} \frac{2-\frac{5}{n}}{3+\frac{1}{n}} \\
& =\frac{2-0}{3+0} \\
& =\frac{2}{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{3}-2 n+7}{4 n^{3}+5 n^{2}-3} & =\lim _{n \rightarrow \infty} \frac{1-\frac{2}{n^{2}}+\frac{7}{n^{3}}}{4+\frac{5}{n}-\frac{3}{n^{3}}} \\
& =\frac{1}{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n-\sqrt{4 n^{2}+1}}{3 n+\sqrt{9 n^{2}+1}} & =\lim _{n \rightarrow \infty} \frac{3-\frac{\sqrt{4 n^{2}+1}}{n}}{3+\frac{\sqrt{9 n^{2}+1}}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3-\sqrt{4+\frac{1}{n^{2}}}}{3+\sqrt{9+\frac{1}{n^{2}}}} \\
& =\frac{1}{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}-4 n+1}\right) \\
= & \lim _{n \rightarrow \infty} \frac{\left(n-\sqrt{n^{2}-4 n+1}\right)\left(n+\sqrt{n^{2}-4 n+1}\right)}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{2}-\left(n^{2}-4 n+1\right)}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{4 n-1}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{4-\frac{1}{n}}{1+\sqrt{1-\frac{4}{n}+\frac{1}{n^{2}}}} \\
= & 2
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln \left(n^{4}+1\right)}{\ln \left(n^{3}+1\right)} & =\lim _{n \rightarrow \infty} \frac{\ln \left(n^{4}\left(1+\frac{1}{n^{4}}\right)\right)}{\ln \left(n^{3}\left(1+\frac{1}{n^{3}}\right)\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln n^{4}+\ln \left(1+\frac{1}{n^{4}}\right)}{\ln n^{3}+\ln \left(1+\frac{1}{n^{3}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4 \ln n+\ln \left(1+\frac{1}{n^{4}}\right)}{3 \ln n+\ln \left(1+\frac{1}{n^{3}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4+\frac{\ln \left(1+\frac{1}{n^{4}}\right)}{\ln n}}{3+\frac{\ln \left(1+\frac{1}{n^{3}}\right)}{\ln n}} \\
& =\frac{4}{3}
\end{aligned}
$$

Squeeze theorem

Theorem (Squeeze theorem)

Suppose a_{n}, b_{n}, c_{n} are sequences such that $a_{n} \leq b_{n} \leq c_{n}$ for any n and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$. Then b_{n} is convergent and

$$
\lim _{n \rightarrow \infty} b_{n}=L .
$$

Theorem

If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

Proof.

Since a_{n} is bounded, there exists M such that $-M<a_{n}<M$ for any n. Thus

$$
-M\left|b_{n}\right|<a_{n} b_{n}<M\left|b_{n}\right|
$$

for any n. Now

$$
\lim _{n \rightarrow \infty}\left(-M\left|b_{n}\right|\right)=\lim _{n \rightarrow \infty} M\left|b_{n}\right|=0
$$

Therefore by squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Example

Find $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+(-1)^{n}}{\sqrt{n}-(-1)^{n}}$.

Solution

Since $\left|(-1)^{n}\right| \leq 1$ is bounded and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, we have $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=0$ and therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n}+(-1)^{n}}{\sqrt{n}-(-1)^{n}} & =\lim _{n \rightarrow \infty} \frac{1+\frac{(-1)^{n}}{\sqrt{n}}}{1-\frac{(-1)^{n}}{\sqrt{n}}} \\
& =1
\end{aligned}
$$

Example

Show that $\lim _{n \rightarrow \infty} \frac{4^{n}}{n!}=0$.

Proof.

Observe that for any $n \geq 4$,

$$
0<\frac{4^{n}}{n!}=\frac{4^{3}}{3!}\left(\frac{4}{4} \cdot \frac{4}{5} \cdot \frac{4}{6} \cdots \frac{4}{n-1}\right) \frac{4}{n} \leq \frac{4^{3}}{3!} \cdot \frac{4}{n}=\frac{128}{3 n}
$$

and $\lim _{n \rightarrow \infty} \frac{128}{3 n}=0$. By squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} \frac{4^{n}}{n!}=0
$$

Example

Let $a_{n}=\frac{1}{n^{3}+1^{2}}+\frac{1}{n^{3}+2^{2}}+\frac{1}{n^{3}+3^{2}}+\cdots+\frac{1}{n^{3}+n^{2}}$. Find $\lim _{n \rightarrow \infty} a_{n}$.

Solution

Observe that for any n,

$$
\frac{n}{n^{3}+n^{2}} \leq \frac{1}{n^{3}+1^{2}}+\frac{1}{n^{3}+2^{2}}+\frac{1}{n^{3}+3^{2}}+\cdots+\frac{1}{n^{3}+n^{2}} \leq \frac{n}{n^{3}+1}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{n^{3}+n^{2}} & =\lim _{n \rightarrow \infty} \frac{1}{n^{2}+n}=0 \\
\lim _{n \rightarrow \infty} \frac{n}{n^{3}+1} & =\lim _{n \rightarrow \infty} \frac{1}{n^{2}+\frac{1}{n}}=0
\end{aligned}
$$

By squeeze theorem, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}+1^{2}}+\frac{1}{n^{3}+2^{2}}+\frac{1}{n^{3}+3^{2}}+\cdots+\frac{1}{n^{3}+n^{2}}\right)=0
$$

Monotone convergence theorem

Theorem (Monotone convergence theorem)
If a_{n} is bounded and monotonic, then a_{n} is convergent.
Bounded and Monotonic \Rightarrow Convergent

Example

Let a_{n} be the sequence defined by the recursive relation
$\left\{a_{n+1}=\sqrt{a_{n}+1}\right.$ for $n \geq 1$
$\left\{a_{1}=1\right.$
Find $\lim _{n \rightarrow \infty} a_{n}$.

n	a_{n}
1	1
2	1.414213562
3	1.553773974
4	1.598053182
5	1.611847754
10	1.618016542
15	1.618033940

Solution

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty} \sqrt{a_{n}+1} \\
a & =\sqrt{a+1} \\
a^{2} & =a+1 \\
a^{2}-a-1 & =0 \\
a & =\frac{1+\sqrt{5}}{2} \text { or } \frac{1-\sqrt{5}}{2} .
\end{aligned}
$$

It is obvious that $a>0$. Therefore

$$
a=\frac{1+\sqrt{5}}{2} \approx 1.6180339887
$$

Solution

The above solution is not complete. The solution is valid only after we have proved that $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive. This can be done by using monotone convergence theorem. We are going to show that a_{n} is bounded and monotonic.

Boundedness

We prove that $1 \leq a_{n}<2$ for all $n \geq 1$ by induction.
(Base case) When $n=1$, we have $a_{1}=1$ and $1 \leq a_{1}<2$.
(Induction step) Assume that $1 \leq a_{k}<2$. Then

$$
\begin{aligned}
& a_{k+1}=\sqrt{a_{k}+1} \geq \sqrt{1+1}>1 \\
& a_{k+1}=\sqrt{a_{k}+1}<\sqrt{2+1}<2
\end{aligned}
$$

Thus $1 \leq a_{n}<2$ for any $n \geq 1$ which implies that a_{n} is bounded.

Solution

Monotonicity: We prove that $a_{n+1}>a_{n}$ for any $n \geq 1$ by induction. (Base case) When $n=1, a_{1}=1, a_{2}=\sqrt{2}$ and thus $a_{2}>a_{1}$.
(Induction step) Assume that

$$
a_{k+1}>a_{k} \text { (Induction hypothesis). }
$$

Then

$$
\begin{aligned}
a_{k+2} & =\sqrt{a_{k+1}+1}>\sqrt{a_{k}+1} \text { (by induction hypothesis) } \\
& =a_{k+1}
\end{aligned}
$$

This completes the induction step and thus a_{n} is strictly increasing. We have proved that a_{n} is bounded and strictly increasing. Therefore a_{n} is convergent by monotone convergence theorem. Since $a_{n} \geq 1$ for any n, we have $\lim _{n \rightarrow \infty} a_{n} \geq 1$ is positive.
This completes that proof that $\lim _{n \rightarrow \infty} a_{n}=\frac{1+\sqrt{5}}{2}$.

Example

Let a_{n} be a sequence defined by

$$
\left\{\begin{array}{l}
a_{n+1}=2 a_{n}-a_{n}^{2}, \text { for } n \geq 1 \\
a_{1}=\frac{1}{2}
\end{array}\right.
$$

1. Prove that $a_{n} \leq 1$ for any positive integer n.
2. Prove that a_{n} is monotonic increasing.
3. Find $\lim _{n \rightarrow \infty} a_{n}$.

Solution

1. Observe that $a_{1}=\frac{1}{2}<1$ and for any $n \geq 2$, we have

$$
a_{n}=2 a_{n-1}-a_{n-1}^{2}=-\left(a_{n-1}-1\right)^{2}+1 \leq 1 .
$$

Therefore $a_{n} \leq 1$ for any positive integer n.

Solution

2. We prove that $a_{n+1}-a_{n} \geq 0$ for any n by induction on n. (Base case) When $n=1, a_{2}-a_{1}=\frac{3}{4}-\frac{1}{2}>0$. (Induction step) Assume that $a_{k+1}-a_{k} \geq 0$. Then

$$
\begin{aligned}
a_{k+2}-a_{k+1} & =\left(2 a_{k+1}-a_{k+1}^{2}\right)-\left(2 a_{k}-a_{k}^{2}\right) \\
& =2\left(a_{k+1}-a_{k}\right)-\left(a_{k+1}^{2}-a_{k}^{2}\right) \\
& =2\left(a_{k+1}-a_{k}\right)-\left(a_{k+1}+a_{k}\right)\left(a_{k+1}-a_{k}\right) \\
& =\left(2-\left(a_{k+1}+a_{k}\right)\right)\left(a_{k+1}-a_{k}\right)
\end{aligned}
$$

Since $a_{k}, a_{k+1} \leq 1$ by (1) and $a_{k+1}-a_{k} \geq 0$ by induction hypothesis, we have $a_{k+2}-a_{k+1} \geq 0$. This completes the induction step and we conclude that a_{n} is monotonic increasing.

Solution

3. Since $a_{n} \leq 1$ is bounded and a_{n} is monotonic increasing, a_{n} is convergent by monotone convergence theorem. Let $\lim _{n \rightarrow \infty} a_{n}=a$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty}\left(2 a_{n}-a_{n}^{2}\right) \\
a & =2 a-a^{2} \\
a^{2}-a & =0 \\
a(a-1) & =0 \\
a & =1 \text { or } 0
\end{aligned}
$$

Since $a_{n} \geq a_{1}=\frac{1}{2}$ for any n, we have $a \geq \frac{1}{2}>0$. Therefore $a=1$ and we proved that $\lim _{n \rightarrow \infty} a_{n}=1$.

Example

Let $a_{n}=\frac{F_{n+1}}{F_{n}}$ where F_{n} is the Fibonacci's sequence defined by
$\left\{\begin{array}{l}F_{n+2}=F_{n+1}+F_{n}\end{array}\right.$
$F_{1}=F_{2}=1$
Find $\lim _{n \rightarrow \infty} a_{n}$.

n	a_{n}
1	1
2	2
3	1.5
4	1.666666666
5	1.6
10	1.618181818
15	1.618032787
20	1.618033999

Theorem

For any $n \geq 1$,
(1) $F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}$
(2) $F_{n+3} F_{n}-F_{n+2} F_{n+1}=(-1)^{n+1}$

Proof

(1) When $n=1$, we have $F_{3} F_{1}-F_{2}^{2}=2 \cdot 1-1^{2}=1=(-1)^{2}$. Assume

$$
F_{k+2} F_{k}-F_{k+1}^{2}=(-1)^{k+1}
$$

Then

$$
\begin{aligned}
F_{k+3} F_{k+1}-F_{k+2}^{2} & =\left(F_{k+2}+F_{k+1}\right) F_{k+1}-F_{k+2}^{2} \\
& =F_{k+2}\left(F_{k+1}-F_{k+2}\right)+F_{k+1}^{2} \\
& =-F_{k+2} F_{k}+F_{k+1}^{2} \\
& =(-1)^{k+2} \text { (by induction hypothesis) }
\end{aligned}
$$

Therefore $F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}$ for any $n \geq 1$.

Proof.

The proof for the second statement is basically the same. When $n=1$, we have $F_{4} F_{1}-F_{3} F_{2}=3 \cdot 1-2 \cdot 1=1=(-1)^{2}$. Assume

$$
F_{k+3} F_{k}-F_{k+2} F_{k+1}=(-1)^{k+1}
$$

Then

$$
\begin{aligned}
F_{k+4} F_{k+1}-F_{k+3} F_{k+2} & =\left(F_{k+3}+F_{k+2}\right) F_{k+1}-F_{k+3} F_{k+2} \\
& =F_{k+3}\left(F_{k+1}-F_{k+2}\right)+F_{k+2} F_{k+1} \\
& =-F_{k+3} F_{k}+F_{k+2} F_{k+1} \\
& =-(-1)^{k+1} \text { (by induction hypothesis) } \\
& =(-1)^{k+2}
\end{aligned}
$$

Therefore $F_{n+3} F_{n}-F_{n+2} F_{n+1}=(-1)^{n+1}$ for any $n \geq 1$.

Theorem

Let $a_{n}=\frac{F_{n+1}}{F_{n}}$.
(1) The sequence $a_{1}, a_{3}, a_{5}, a_{7}, \cdots$, is strictly increasing.
(2) The sequence $a_{2}, a_{4}, a_{6}, a_{8}, \cdots$, is strictly decreasing.

Proof.

For any $k \geq 1$, we have

$$
\begin{aligned}
a_{2 k+1}-a_{2 k-1} & =\frac{F_{2 k+2}}{F_{2 k+1}}-\frac{F_{2 k}}{F_{2 k-1}}=\frac{F_{2 k+2} F_{2 k-1}-F_{2 k+1} F_{2 k}}{F_{2 k+1} F_{2 k-1}} \\
& =\frac{(-1)^{2 k}}{F_{2 k+1} F_{2 k-1}}=\frac{1}{F_{2 k+1} F_{2 k-1}}>0
\end{aligned}
$$

Therefore $a_{1}, a_{3}, a_{5}, a_{7}, \cdots$, is strictly increasing. The second statement can be proved in a similar way.

Theorem

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=0
$$

Proof.

For any $k \geq 1$,

$$
\begin{aligned}
a_{2 k+1}-a_{2 k} & =\frac{F_{2 k+2}}{F_{2 k+1}}-\frac{F_{2 k+1}}{F_{2 k}} \\
& =\frac{F_{2 k+2} F_{2 k}-F_{2 k+1}^{2}}{F_{2 k+1} F_{2 k}}=\frac{1}{F_{2 k+1} F_{2 k}}
\end{aligned}
$$

Therefore

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=\lim _{k \rightarrow \infty} \frac{1}{F_{2 k+1} F_{2 k}}=0 .
$$

Theorem

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2}
$$

Proof

First we prove that $a_{n}=\frac{F_{n+1}}{F_{n}}$ is convergent.
a_{n} is bounded. ($1 \leq a_{n} \leq 2$ for any n.)
$a_{2 k+1}$ and $a_{2 k}$ are convergent. (They are bounded and monotonic.)

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=0 \Rightarrow \lim _{k \rightarrow \infty} a_{2 k+1}=\lim _{k \rightarrow \infty} a_{2 k}
$$

It follows that a_{n} is convergent and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} a_{2 k+1}=\lim _{k \rightarrow \infty} a_{2 k}
$$

Proof.

To evaluate the limit, suppose $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=L$. Then

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} \frac{F_{n+2}}{F_{n+1}}=\lim _{n \rightarrow \infty} \frac{F_{n+1}+F_{n}}{F_{n+1}}=\lim _{n \rightarrow \infty}\left(1+\frac{F_{n}}{F_{n+1}}\right)=1+\frac{1}{L} \\
L^{2}-L-1=0
\end{gathered}
$$

By solving the quadratic equation, we have

$$
L=\frac{1+\sqrt{5}}{2} \text { or } \frac{1-\sqrt{5}}{2} .
$$

We must have $L \geq 1$ since $a_{n} \geq 1$ for any n. Therefore

$$
L=\frac{1+\sqrt{5}}{2} .
$$

Remarks

The limit can be calculated directly using the formula

$$
\begin{aligned}
F_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}
$$

are the roots of the quadratic equation

$$
x^{2}-x-1=0
$$

Theorem

Let

$$
\begin{aligned}
& a_{n}=\left(1+\frac{1}{n}\right)^{n} \\
& b_{n}=\sum_{k=0}^{n} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
\end{aligned}
$$

Then

(1) $a_{n}<b_{n}$ for any $n>1$.
(2) a_{n} and b_{n} are convergent and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}
$$

$$
\begin{aligned}
a_{n} & =\left(1+\frac{1}{n}\right)^{n} \\
b_{n} & =\sum_{k=0}^{n} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
\end{aligned}
$$

n	a_{n}	b_{n}
1	2	2
5	2.48832	2.716666666666
10	2.593742	2.718281801146
100	2.704813	2.718281828459
100000	2.718268	2.718281828459

The limit of the two sequences is the important Euler's number

$$
e \approx 2.71828182845904523536 \ldots
$$

which is also known as the Napier's constant.

Definition (Convergence of infinite series)

We say that an infinite series

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots
$$

is convergent if the sequence of partial sums
$s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ is convergent. If the infinite series is convergent, then we define

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

Limits of functions

Definition (Function)

A real valued function on a subset $D \subset \mathbb{R}$ is a real value $f(x)$ assigned to each of the values $x \in D$. The set D is called the domain of the function.

Given an expression $f(x)$ in x, the domain D is understood to be taken as the set of all real numbers x such that $f(x)$ is defined. This is called the maximum domain of definition of $f(x)$.

Definition (Graph of function)

Let $f(x)$ is a real valued function. The graph of $f(x)$ is the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: y=f(x)\right\}
$$

Definition

Let $f(x)$ be a real valued function and D be its domain. We say that $f(x)$ is
(1) injective if for any $x_{1}, x_{2} \in D$ with $x_{1} \neq x_{2}$, we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
(2) surjective if for any real number $y \in \mathbb{R}$, there exists $x \in D$ such that $f(x)=y$.
(3) bijective if $f(x)$ is both injective and surjective.

Definition

Let $f(x)$ be a real valued function. We say that $f(x)$ is
(1) even if $f(-x)=f(x)$ for any x.
(2) odd if $f(-x)=-f(x)$ for any x.

Example

$f(x)$	Domain	Injective	Surjective	Bijective	Even	Odd
$2 x-3$	\mathbb{R}	\checkmark	\checkmark	\checkmark	\times	\times
$x^{3}-2 x^{2}$	\mathbb{R}	\times	\checkmark	\times	\times	\times
$\frac{1}{x}$	$x \neq 0$	\checkmark	\times	\times	\times	\checkmark
$\frac{4 x}{x^{2}+1}$	\mathbb{R}	\times	\times	\times	\times	\checkmark
$\frac{x}{x^{2}-1}$	$x \neq \pm 1$	\times	\checkmark	\times	\times	\checkmark
$x^{2}-\frac{1}{x^{2}}$	$x \neq 0$	\times	\checkmark	\times	\checkmark	\times
$\sqrt{4-x^{2}}$	$-2 \leq x \leq 2$	\times	\times	\times	\checkmark	\times
$\frac{1}{\sqrt{x+4}}$	$x>-4$	\checkmark	\times	\times	\times	\times

Definition (Limit of function)

Let $f(x)$ be a real valued function.
(1) We say that a real number l is a limit of $f(x)$ at $x=a$ if for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-l|<\epsilon
$$

and write

$$
\lim _{x \rightarrow a} f(x)=l
$$

(2) We say that a real number l is a limit of $f(x)$ at $+\infty$ if for any $\epsilon>0$, there exists $R>0$ such that

$$
\text { if } x>R \text {, then }|f(x)-l|<\epsilon
$$

and write

$$
\lim _{x \rightarrow+\infty} f(x)=l
$$

The limit of $f(x)$ at $-\infty$ is defined similarly.
(1) Note that for the limit of $f(x)$ at $x=a$ to exist, $f(x)$ may not be defined at $x=a$ and even if $f(a)$ is defined, the value of $f(a)$ does not affect the value of $\lim _{x \rightarrow a} f(x)$.
(2) The limit of $f(x)$ at $x=a$ may not exist. However the limit is unique if it exists.

$\lim _{x \rightarrow a} f(x)=l$

$\lim _{x \rightarrow a} f(x)$
does not exist

Theorem (Sequential criterion for limits of functions)

Let $f(x)$ be a real valued function. Then

$$
\lim _{x \rightarrow a} f(x)=l
$$

if and only if for any sequence x_{n} of real numbers with $x_{n} \neq a$ for any n and $\lim _{n \rightarrow \infty} x_{n}=a$, we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=l .
$$

Theorem

Let $f(x), g(x)$ be functions such that $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} g(x)$ exist and c be a real number. Then
(1) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(2) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
(3) $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
(a) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$.

Theorem (Squeeze theorem)

Let $f(x), g(x), h(x)$ be real valued functions. Suppose
(1) $f(x) \leq g(x) \leq h(x)$ for any $x \neq a$ on a neighborhood of a, and
(2) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=l$.

Then the limit of $g(x)$ at $x=a$ exists and $\lim _{x \rightarrow a} g(x)=l$.

Theorem

Suppose

(1) $f(x)$ is bounded, and
(2) $\lim _{x \rightarrow a} g(x)=0$

Then $\lim _{x \rightarrow a} f(x) g(x)=0$.

Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The exponential function is defined for real number $x \in \mathbb{R}$ by

$$
\begin{aligned}
e^{x} & =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

(1) It can be proved that the two limits in the definition exist and converge to the same value for any real number x.
(2) e^{x} is just a notation for the exponential function. One should not interpret it as ' e to the power x '.

Theorem

For any $x, y \in \mathbb{R}$, we have

$$
e^{x+y}=e^{x} e^{y}
$$

Caution! One cannot use law of indices to prove the above identity. It is because e^{x} is just a notation for the exponential function and it does not mean ' e to the power x '. In fact we have not defined what a^{x} means when x is a real number which is not rational.

Theorem

(1) $e^{x}>0$ for any real number x.
(2) e^{x} is strictly increasing.

Proof.

(1) For any $x>0$, we have $e^{x}>1+x>1$. If $x<0$, then

$$
\begin{aligned}
e^{x} e^{-x} & =e^{x+(-x)}=e^{0}=1 \\
e^{x} & =\frac{1}{e^{-x}}>0
\end{aligned}
$$

since $e^{-x}>1$. Therefore $e^{x}>0$ for any $x \in \mathbb{R}$.
(2) Let x, y be real numbers with $x<y$. Then $y-x>0$ which implies $e^{y-x}>1$. Therefore

$$
e^{y}=e^{x+(y-x)}=e^{x} e^{y-x}>e^{x}
$$

Definition (Logarithmic function)

The logarithmic function is the function $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined for $x>0$ by

$$
y=\ln x \text { if } e^{y}=x
$$

In other words, $\ln x$ is the inverse function of e^{x}.
It can be proved that for any $x>0$, there exists unique real number y such that $e^{y}=x$.

Theorem

(1) $\ln x y=\ln x+\ln y$
(2) $\ln \frac{x}{y}=\ln x-\ln y$
(3) $\ln x^{n}=n \ln x$ for any integer $n \in \mathbb{Z}$.

Proof.

(1) Let $u=\ln x$ and $v=\ln y$. Then $x=e^{u}, y=e^{v}$ and we have

$$
x y=e^{u} e^{v}=e^{u+v}=e^{\ln x+\ln y}
$$

which means $\ln x y=\ln x+\ln y$.
Other parts can be proved similarly.

Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number $x \in \mathbb{R}$ by the infinite series

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{aligned}
$$

(1) When the sine and cosine are interpreted as trigonometric ratios, the angles are measured in radian. $\left(180^{\circ}=\pi\right)$
(2) The series for cosine and sine are convergent for any real number $x \in \mathbb{R}$.

There are four more trigonometric functions namely tangent, cotangent, secant and cosecant functions. All of them are defined in terms of sine and cosine.

Definition (Trigonometric functions)

$$
\begin{aligned}
\tan x & =\frac{\sin x}{\cos x}, \text { for } x \neq \frac{2 k+1}{2} \pi, k \in \mathbb{Z} \\
\cot x & =\frac{\cos x}{\sin x}, \text { for } x \neq k \pi, k \in \mathbb{Z} \\
\sec x & =\frac{1}{\cos x}, \text { for } x \neq \frac{2 k+1}{2} \pi, k \in \mathbb{Z} \\
\csc x & =\frac{1}{\sin x}, \text { for } x \neq k \pi, k \in \mathbb{Z}
\end{aligned}
$$

Differentiation Integration

Theorem (Trigonometric identities)

(1) $\cos ^{2} x+\sin ^{2} x=1 ; \quad \sec ^{2} x-\tan ^{2} x=1 ; \quad \csc ^{2} x-\cot ^{2} x=1$
(2) $\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$;
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y ;$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$
(3) $\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$;
$\sin 2 x=2 \sin x \cos x ;$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
(4) $2 \cos x \cos y=\cos (x+y)+\cos (x-y)$
$2 \cos x \sin y=\sin (x+y)-\sin (x-y)$
$2 \sin x \sin y=\cos (x-y)-\cos (x+y)$
(5) $\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
$\cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$
$\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
$\sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$

Definition (Hyperbolic function)

The hyperbolic functions are defined for $x \in \mathbb{R}$ by

$$
\begin{aligned}
\cosh x & =\frac{e^{x}+e^{-x}}{2}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots \\
\sinh x & =\frac{e^{x}-e^{-x}}{2}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots
\end{aligned}
$$

Theorem (Hyperbolic identities)

(1) $\cosh ^{2} x-\sinh ^{2} x=1$
(2) $\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$ $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$
(3) $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1=1+2 \sinh ^{2} x$; $\sinh 2 x=2 \sinh x \cosh x$

Theorem

(1) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(2) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
(3) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Proof. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.
For any $-1<x<1$ with $x \neq 0$, we have

$$
\begin{aligned}
\frac{e^{x}-1}{x} & =1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots \\
& \leq 1+\frac{x}{2}+\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\frac{x^{2}}{16}+\cdots\right)=1+\frac{x}{2}+\frac{x^{2}}{2} \\
\frac{e^{x}-1}{x} & =1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\cdots \\
& \geq 1+\frac{x}{2}-\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\frac{x^{2}}{16}+\cdots\right)=1+\frac{x}{2}-\frac{x^{2}}{2}
\end{aligned}
$$

and $\lim _{x \rightarrow 0}\left(1+\frac{x}{2}+\frac{x^{2}}{2}\right)=\lim _{x \rightarrow 0}\left(1+\frac{x}{2}-\frac{x^{2}}{2}\right)=1$. Therefore $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

Figure: $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$

Proof. $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$.
Let $y=\ln (1+x)$. Then

$$
\begin{aligned}
e^{y} & =1+x \\
x & =e^{y}-1
\end{aligned}
$$

and $x \rightarrow 0$ as $y \rightarrow 0$. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} & =\lim _{y \rightarrow 0} \frac{y}{e^{y}-1} \\
& =1
\end{aligned}
$$

Note that the first part implies $\lim _{y \rightarrow 0}\left(e^{y}-1\right)=0$.

Proof. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Note that

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\frac{x^{10}}{11!}+\cdots
$$

For any $-1<x<1$ with $x \neq 0$, we have

$$
\begin{aligned}
& \frac{\sin x}{x}=1-\left(\frac{x^{2}}{3!}-\frac{x^{4}}{5!}\right)-\left(\frac{x^{6}}{7!}-\frac{x^{8}}{9!}\right)-\cdots \leq 1 \\
& \frac{\sin x}{x}=1-\frac{x^{2}}{6}+\left(\frac{x^{4}}{5!}-\frac{x^{6}}{7!}\right)+\left(\frac{x^{8}}{9!}-\frac{x^{10}}{11!}\right)+\cdots \geq 1-\frac{x^{2}}{6}
\end{aligned}
$$

and $\lim _{x \rightarrow 0} 1=\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{6}\right)=1$. Therefore

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Limits

Theorem

Let k be a positive integer.
(1) $\lim _{x \rightarrow+\infty} \frac{x^{k}}{e^{x}}=0$
(2) $\lim _{x \rightarrow+\infty} \frac{(\ln x)^{k}}{x}=0$

Proof.

(1) For any $x>0$,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots>\frac{x^{k+1}}{(k+1)!}
$$

and thus

$$
0<\frac{x^{k}}{e^{x}}<\frac{(k+1)!}{x}
$$

Moreover $\lim _{x \rightarrow+\infty} \frac{(k+1)!}{x}=0$. Therefore

$$
\lim _{x \rightarrow+\infty} \frac{x^{k}}{e^{x}}=0
$$

(2) Let $x=e^{y}$. Then $x \rightarrow+\infty$ as $y \rightarrow+\infty$ and $\ln x=y$. We have

$$
\lim _{x \rightarrow+\infty} \frac{(\ln x)^{k}}{x}=\lim _{y \rightarrow+\infty} \frac{y^{k}}{e^{y}}=0
$$

Example

1. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{x}-2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)(\sqrt{x}+2)}{x-4} \\
& =\lim _{x \rightarrow 4}(x+4)(\sqrt{x}+2)=32
\end{aligned}
$$

2. $\lim _{x \rightarrow+\infty} \frac{3 e^{2 x}+e^{x}-x^{4}}{4 e^{2 x}-5 e^{x}+2 x^{4}}=\lim _{x \rightarrow+\infty} \frac{3+e^{-x}-x^{4} e^{-2 x}}{4-5 e^{-x}+2 x^{4} e^{-2 x}}=\frac{3}{4}$
3. $\lim _{x \rightarrow+\infty} \frac{\ln \left(2 e^{4 x}+x^{3}\right)}{\ln \left(3 e^{2 x}+4 x^{5}\right)}=\lim _{x \rightarrow+\infty} \frac{4 x+\ln \left(2+x^{3} e^{-4 x}\right)}{2 x+\ln \left(3+4 x^{5} e^{-2 x}\right)}$

$$
=\lim _{x \rightarrow+\infty} \frac{4+\frac{\ln \left(2+x^{3} e^{-4 x}\right)}{x}}{2+\frac{\ln \left(3+4 x^{5} e^{-2 x}\right)}{x}}=2
$$

4. $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}-2 x}\right)$
$=\lim _{x \rightarrow-\infty} \frac{\left(x+\sqrt{x^{2}-2 x}\right)\left(x-\sqrt{x^{2}-2 x}\right)}{x-\sqrt{x^{2}-2 x}}$
$=\lim _{x \rightarrow-\infty} \frac{2 x}{x-\sqrt{x^{2}-2 x}}$
$=\lim _{x \rightarrow-\infty} \frac{2}{1+\sqrt{1-\frac{2}{x}}}=1$

Example

5. $\lim _{x \rightarrow 0} \frac{\sin 6 x-\sin x}{\sin 4 x-\sin 3 x}=\lim _{x \rightarrow 0} \frac{\frac{6 \sin 6 x}{6 x}-\frac{\sin x}{x}}{\frac{4 \sin 4 x}{4 x}-\frac{3 \sin 3 x}{3 x}}=\frac{6-1}{4-3}=5$
6. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \tan x}=\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x \frac{\sin x}{\cos x}(1+\cos x)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(1-\cos ^{2} x\right) \cos x}{x \sin x(1+\cos x)} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right) \frac{\cos x}{1+\cos x}=\frac{1}{2}
\end{aligned}
$$

7. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (1+3 x)}=\lim _{x \rightarrow 0} \frac{2}{3} \cdot \frac{e^{2 x}-1}{2 x} \cdot \frac{3 x}{\ln (1+3 x)}=\frac{2}{3}$
8. $\lim _{x \rightarrow 0} \frac{x \ln (1+\sin x)}{1-\sqrt{\cos x}}=\lim _{x \rightarrow 0} \frac{x(1+\sqrt{\cos x})(1+\cos x) \ln (1+\sin x)}{1-\cos ^{2} x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \frac{\ln (1+\sin x)}{\sin x}(1+\sqrt{\cos x})(1+\cos x) \\
& =4
\end{aligned}
$$

Theorem

Let $g(u)$ be a function of u and $u=f(x)$ be a function of x. Suppose
(1) $\lim _{x \rightarrow a} f(x)=b \in[-\infty,+\infty]$
(2) $\lim _{u \rightarrow b} g(u)=l$
(3) $f(x) \neq b$ when $x \neq a$ or $g(b)=l$.

Then

$$
\lim _{x \rightarrow a}(g \circ f)(x)=l .
$$

$$
x \xrightarrow{f} u=f(x) \xrightarrow{g}(g \circ f)(x)=g(u)=g(f(x))
$$

Example

1. $\lim _{x \rightarrow 0} \frac{e^{4 x^{3}}-1}{x^{2} \sin 3 x} \quad=\lim _{x \rightarrow 0} \frac{4}{3}\left(\frac{3 x}{\sin 3 x}\right)\left(\frac{e^{4 x^{3}}-1}{4 x^{3}}\right)$

$$
=\frac{4}{3} \lim _{y \rightarrow 0}\left(\frac{e^{y}-1}{y}\right) \quad\left(y=4 x^{3}\right)
$$

$$
=\frac{4}{3}
$$

2. $\lim _{x \rightarrow 0} \frac{\ln (1+2 \tan x)}{x}=\lim _{x \rightarrow 0}\left(\frac{2}{\cos x}\right)\left(\frac{\sin x}{x}\right)\left(\frac{\ln (1+2 \tan x)}{2 \tan x}\right)$

$$
\begin{aligned}
& =2 \lim _{y \rightarrow 0}\left(\frac{\ln (1+y)}{y}\right) \quad(y=2 \tan x) \\
& =2
\end{aligned}
$$

Definition (Continuity)

Let $f(x)$ be a real valued function. We say that $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

In other words, $f(x)$ is continuous at $x=a$ if for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\text { if }|x-a|<\delta \text {, then }|f(x)-f(a)|<\epsilon \text {. }
$$

We say that $f(x)$ is continuous on an interval in \mathbb{R} if $f(x)$ is continuous at every point on the interval.

Theorem

Let $g(u)$ be a function in u and $u=f(x)$ be a function in x. Suppose $g(u)$ is continuous and the limit of $f(x)$ at $x=a$ exists. Then

$$
\lim _{x \rightarrow a}(g \circ f)(x)=\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right) .
$$

$$
x \xrightarrow{f} u=f(x) \xrightarrow{g}(g \circ f)(x)=g(u)=g(f(x))
$$

Theorem

(1) For any non-negative integer $n, f(x)=x^{n}$ is continuous on \mathbb{R}.
(2) The functions $e^{x}, \cos x, \sin x$ are continuous on \mathbb{R}.
(3) The logarithmic function $\ln x$ is continuous on \mathbb{R}^{+}.

Theorem

Suppose $f(x), g(x)$ are continuous functions and c is a real number. Then the following functions are continuous.
(1) $f(x)+g(x)$
(2) $c f(x)$
(3) $f(x) g(x)$
(9) $\frac{f(x)}{g(x)}$ at the points where $g(x) \neq 0$.
(6) $(f \circ g)(x)$

Definition

The absolute value of $x \in \mathbb{R}$ is defined by

$$
|x|= \begin{cases}-x, & \text { if } x<0 \\ x, & \text { if } x \geq 0\end{cases}
$$

Example (Piecewise defined function)

a	1	5
$\lim _{x \rightarrow a^{-}} f(x)$	3	2
$\lim _{x \rightarrow a^{+}} f(x)$	0	2
$\lim _{x \rightarrow a} f(x)$	does not exist	2

Example

Theorem

A function $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

The theorem is usually used to check whether a piecewise defined function is continuous.

The following functions are not continuous at $x=a$.

Example

Given that the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x<2 \\ a & \text { if } x=2 \\ x^{2}+b & \text { if } x>2\end{cases}
$$

is continuous at $x=2$. Find the value of a and b.

Solution

Note that

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}(2 x-1)=3 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}\left(x^{2}+b\right)=4+b \\
f(2) & =a
\end{aligned}
$$

Since $f(x)$ is continuous at $x=2$, we have $3=4+b=a$ which implies $a=3$ and $b=-1$.

Example

Prove that the function

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is not continuous at $x=0$.

Proof.

Let $x_{n}=\frac{2}{(2 n+1) \pi}$ for $n=1,2,3, \ldots$. Then $\lim _{n \rightarrow \infty} x_{n}=0$ and

$$
f\left(x_{n}\right)=\sin \left(\frac{(2 n+1) \pi}{2}\right)=(-1)^{n} .
$$

Thus $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ does not exist. Therefore $f(x)$ is not continuous at $x=0$.

$f(x)$ is not continuous at $x=0$.

Theorem (Intermediate value theorem)

Suppose $f(x)$ is a function which is continuous on $[a, b]$. Then for any real number η between $f(a)$ and $f(b)$, there exists $\xi \in(a, b)$ such that $f(\xi)=\eta$.

Theorem (Extreme value theorem)

Suppose $f(x)$ is a function which is continuous on a closed and bounded interval $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta) \text { for any } x \in[a, b] .
$$

Differentiable functions

Definition (Differentiable function)

Let $f(x)$ be a function. Denote

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

and we say that $f(x)$ is differentiable at $x=a$ if the above limit exists. We say that $f(x)$ is differentiable on (a, b) if $f(x)$ is differentiable at every point in (a, b).

The above limit can also be written as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Figure: Definition of derivative

Theorem

If $f(x)$ differentiable at $x=a$, then $f(x)$ is continuous at $x=a$. Differentiable at $x=a \Rightarrow$ Continuous at $x=a$

Proof.

Suppose $f(x)$ is differentiable at $x=a$. Then

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)-f(a)) & =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)(x-a) \\
& =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right) \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Therefore $f(x)$ is continuous at $x=a$.
Note that the converse of the above theorem does not hold. The function $f(x)=|x|$ is continuous but not differentiable at 0 .

The following functions are not differentiable at $x=a$.

Example

(1) $f(x)=e^{x}: f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
(2) $f(x)=\ln x: f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=1$.
(3) $f(x)=\sin x: f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin h-\sin 0}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.

Example

Find $f^{\prime}(x)$ if $f(x)=|x| \sin x$.
Solution: We have

$$
f(x)= \begin{cases}-x \sin x, & \text { if } x<0 \\ x \sin x, & \text { if } x \geq 0\end{cases}
$$

For $x<0$, we have $f^{\prime}(x)=-x \cos x-\sin x$.
For $x>0$, we have $f^{\prime}(x)=x \cos x+\sin x$.
For $x=0$, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h| \sin h}{h}=\lim _{h \rightarrow 0}|h|\left(\frac{\sin h}{h}\right)=0 .
$$

Combining the above results, we have

$$
f^{\prime}(x)= \begin{cases}-x \cos x-\sin x, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ x \cos x+\sin x, & \text { if } x>0\end{cases}
$$

Example

Find a, b if $f(x)=\left\{\begin{array}{ll}4 x-1, & \text { if } x \leq 1 \\ a x^{2}+b x, & \text { if } x>1\end{array}\right.$ is differentiable at $x=1$.
Solution: Since $f(x)$ is differentiable at $x=1, f(x)$ is continuous at $x=1$ and

$$
\lim _{x \rightarrow 1^{+}} f(x)=f(1) \Rightarrow \lim _{x \rightarrow 1^{+}}\left(a x^{2}+b x\right)=a+b=3
$$

Moreover, $f(x)$ is differentiable at $x=1$ and we have
$\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(4(1+h)-1)-3}{h}=4$
$\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{a(1+h)^{2}+b(1+h)-3}{h}$

$$
=\quad \lim _{h \rightarrow 0^{+}}(2 a+b+h)=2 a+b \quad(\text { We used } a+b=3)
$$

Therefore $\left\{\begin{array}{l}a+b=3 \\ 2 a+b=4\end{array} \Rightarrow\left\{\begin{array}{l}a=1 \\ b=2\end{array}\right.\right.$

Definition (First derivative)

Let $y=f(x)$ be a differentiable function on (a, b). The first derivative of $f(x)$ is the function on (a, b) defined by

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Theorem

Let $f(x)$ and $g(x)$ be differentiable functions and c be a real number. Then
(1) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
(2) $(c f)^{\prime}(x)=c f^{\prime}(x)$

Theorem

(1) $\frac{d}{d x} x^{n}=n x^{n-1}, n \in \mathbb{Z}^{+}$, for $x \in \mathbb{R}$
(2) $\frac{d}{d x} e^{x}=e^{x}$ for $x \in \mathbb{R}$
(3) $\frac{d}{d x} \ln x=\frac{1}{x}$ for $x>0$
(c) $\frac{d}{d x} \cos x=-\sin x$ for $x \in \mathbb{R}$
(6) $\frac{d}{d x} \sin x=\cos x$ for $x \in \mathbb{R}$
$\operatorname{Proof}\left(\frac{d}{d x} x^{n}=n x^{n-1}\right)$
Let $y=x^{n}$. For any $x \in \mathbb{R}$, we have

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-x)\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right) \\
& =n x^{n-1}
\end{aligned}
$$

Note that the above proof is valid only when $n \in \mathbb{Z}^{+}$is a positive integer.

Proof $\left(\frac{d}{d x} e^{x}=e^{x}\right)$
Let $y=e^{x}$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} .
$$

(Alternative proof)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right) \\
& =0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\cdots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =e^{x}
\end{aligned}
$$

In general, differentiation cannot be applied term by term to infinite series. The second proof is valid only after we prove that this can be done to power series.

Proof

$\left(\frac{d}{d x} \ln x=\frac{1}{x}\right)$ Let $f(x)=\ln x$. For any $x>0$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}=\lim _{h \rightarrow 0} \frac{\ln \left(1+\frac{h}{x}\right)}{h}=\frac{1}{x} .
$$

$\left(\frac{d}{d x} \cos x=-\sin x\right)$ Let $f(x)=\cos x$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=\lim _{h \rightarrow 0} \frac{-2 \sin \left(x+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)}{h}=-\sin x .
$$

$\left(\frac{d}{d x} \sin x=\cos x\right)$ Let $f(x)=\sin x$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{2 \cos \left(x+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)}{h}=\cos x
$$

Definition

Let $a>0$ be a positive real number. For $x \in \mathbb{R}$, we define

$$
a^{x}=e^{x \ln a}
$$

Theorem

Let $a>0$ be a positive real number. We have
(1) $a^{x+y}=a^{x} a^{y}$ for any $x, y \in \mathbb{R}$
(2) $\frac{d}{d x} a^{x}=a^{x} \ln a$.

Proof.

(1) $a^{x+y}=e^{(x+y) \ln a}=e^{x \ln a} e^{y \ln a}=a^{x} a^{y}$
(2) $\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \ln a=a^{x} \ln a$

Example

Let $f(x)=|x|$ for $x \in \mathbb{R}$. Show that $f(x)$ is not differentiable at $x=0$.

Proof.

Observe that

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1 \\
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1
\end{aligned}
$$

Thus the limit

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

does not exist. Therefore $f(x)$ is not differentiable at $x=0$.

Figure: $f(x)=|x|$ is not differentiable at $x=0$

Exercise (True or False)

Suppose $f(x)$ is bounded and is differentiable on (a, b). Determine whether the following statements are always true.
(1) $f^{\prime}(x)$ is differentiable on (a, b).

Answer: F
(2) $f^{\prime}(x)$ is continuous on (a, b).

Answer: F
(3) $f^{\prime}(x)$ is bounded on (a, b).

Answer: F

Example

Let $f(x)=|x| x$ for $x \in \mathbb{R}$. Find $f^{\prime}(x)$.
Solution: When $x<0, f(x)=-x^{2}$ and $f^{\prime}(x)=-2 x$. When $x>0$, $f(x)=x^{2}$ and $f^{\prime}(x)=2 x$. When $x=0$, we have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h| h-0}{h}=\lim _{h \rightarrow 0}|h|=0
$$

Thus $f^{\prime}(0)=0$. Therefore

$$
\begin{aligned}
f^{\prime}(x) & = \begin{cases}-2 x, & \text { if } x<0 \\
0, & \text { if } x=0 \\
2 x, & \text { if } x>0\end{cases} \\
& =2|x| .
\end{aligned}
$$

Note that $f^{\prime}(x)=2|x|$ is continuous at $x=0$.

- $f(x)$ is differentiable at $x=0 .(f(x)$ is differentiable on \mathbb{R}.)
- $f^{\prime}(x)$ is continuous on \mathbb{R}.
- $f^{\prime}(x)$ is not differentiable at $x=0$.

Example

Let

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

(1) Find $f^{\prime}(x)$ for $x \neq 0$.
(2) Determine whether $f(x)$ is differentiable at $x=0$.

Solution

1. When $x \neq 0$,

$$
f^{\prime}(x)=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}
$$

2. We have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h \sin \frac{1}{h}}{h}=\lim _{h \rightarrow 0} \sin \frac{1}{h}
$$

does not exist. Therefore $f(x)$ is not differentiable at $x=0$.

- $f(x)$ is not differentiable at $x=0$. $\left(f^{\prime}(0)\right.$ does not exist.)

Example

Let

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array} .\right.
$$

(1) Find $f^{\prime}(x)$.
(2) Determine whether $f^{\prime}(x)$ is continuous at $x=0$.

Solution

1. When $x \neq 0$, we have

$$
f^{\prime}(x)=2 x \sin \frac{1}{x}+x^{2}\left(-\frac{1}{x^{2}} \cos \frac{1}{x}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x} .
$$

Solution

2. When $x=0$, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}
$$

Since $\lim _{h \rightarrow 0} h=0$ and $\left|\sin \frac{1}{h}\right| \leq 1$ is bounded, we have $f^{\prime}(0)=0$. Therefore

$$
f^{\prime}(x)= \begin{cases}2 x \sin \frac{1}{x}-\cos \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Observe that

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left(2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right)
$$

does not exist. We conclude that $f^{\prime}(x)$ is not continuous at $x=0$.

Limits

- $f^{\prime}(0)=0(f(x)$ is differentiable on $\mathbb{R})$
- $f^{\prime}(x)$ is not continuous at $x=0$

- $f^{\prime}(0)=0(f(x)$ is differentiable on $\mathbb{R})$
- $f^{\prime}(x)$ is not continuous at $x=0$
- $f^{\prime}(x)$ is not bounded near $x=0$

Example

$f(x)$	$f(x)$ is continuous at $x=0$	$f(x)$ is differentiable at $x=0$	$f^{\prime}(x)$ is continuous at $x=0$
$\|x\|$	Yes	No	Not applicable
$\|x\| x$	Yes	Yes	Yes
$x \sin \left(\frac{1}{x}\right) ; f(0)=0$	Yes	No	Not applicable
$x^{2} \sin \left(\frac{1}{x}\right) ; f(0)=0$	Yes	Yes	No

Example

The following diagram shows the logical relations between continuity and differentiability of a function at a point $x=a$. (Examples in the bracket is for $a=0$.)
$f^{\prime}(x)$ is differentiable at $x=a \quad\left(f(x)=\frac{\sin x}{x} ; f(0)=1\right)$ \Downarrow $f^{\prime}(x)$ is continuous at $x=a$

$$
\mathbf{(} f(x)=|x| x)
$$

\Downarrow
$f(x)$ is differentiable at $x=a \quad\left(f(x)=x^{2} \sin \frac{1}{x} ; f(0)=0\right)$ \Downarrow
$f(x)$ is continuous at $x=a$

$$
\mathbf{(} f(x)=|x|)
$$

Rules of differentiation

Theorem (Basic formulas for differentiation)

$$
\begin{array}{ll}
\frac{d}{d x} x^{n}=n x^{n-1} & \\
\frac{d}{d x} e^{x}=e^{x} & \frac{d}{d x} \ln x=\frac{1}{x} \\
\frac{d}{d x} \sin x=\cos x & \frac{d}{d x} \cos x=-\sin x \\
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \sec x=\sec x \tan x & \frac{d}{d x} \csc x=-\csc x \cot x \\
\frac{d}{d x} \cosh x=\sinh x & \frac{d}{d x} \sinh x=\cosh x
\end{array}
$$

Theorem (Product rule and quotient rule)

Let u and v be differentiable functions of x. Then

$$
\begin{aligned}
\frac{d}{d x} u v & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
\frac{d}{d x} \frac{u}{v} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Proof

Let $u=f(x)$ and $v=g(x)$.

$$
\begin{aligned}
\frac{d}{d x} u v & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\frac{f(x+h) g(x)-f(x) g(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(f(x+h) \cdot \frac{g(x+h)-g(x)}{h}+g(x) \cdot \frac{f(x+h)-f(x)}{h}\right) \\
& =u \frac{d v}{d x}+v \frac{d u}{d x}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\frac{d}{d x} \frac{u}{v} & =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x) g(x+h)} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x)-f(x) g(x)}{h g(x) g(x+h)}-\frac{f(x) g(x+h)-f(x) g(x)}{h g(x) g(x+h)}\right) \\
& =\lim _{h \rightarrow 0}\left(g(x) \cdot \frac{f(x+h)-f(x)}{h g(x) g(x+h)}-f(x) \cdot \frac{g(x+h)-g(x)}{h g(x) g(x+h)}\right) \\
& =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Theorem (Chain rule)

Let $y=f(u)$ be a function of u and $u=g(x)$ be a function of x. Suppose $g(x)$ is differentiable at $x=a$ and $f(u)$ is differentiation at $u=g(a)$. Then $f \circ g(x)=f(g(x))$ is differentiable at $x=a$ and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a) .
$$

In other words,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} .
$$

Proof

$$
\begin{aligned}
& (f \circ g)^{\prime}(a) \\
= & \lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)} \lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
= & \lim _{k \rightarrow 0} \frac{f(g(a)+k)-f(g(a))}{k} \lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
& (\text { Note that } g(a+h)-g(a)=k \rightarrow 0 \text { as } h \rightarrow 0 \text { because } g(x) \text { is continuous.) } \\
= & f^{\prime}(g(a)) g^{\prime}(a)
\end{aligned}
$$

The above proof is valid only if $g(a+h)-g(a) \neq 0$ whenever h is sufficiently close to 0 . This is true when $g^{\prime}(a) \neq 0$ because of the following proposition.

Proposition

Suppose $g(x)$ is a function such that $g^{\prime}(a) \neq 0$. Then there exists $\delta>0$ such that if $0<|h|<\delta$, then

$$
g(a+h)-g(a) \neq 0 .
$$

When $g^{\prime}(a)=0$, we need another proposition.

Proposition

Suppose $f(u)$ is a function which is differentiable at $u=b$. Then there exists $\delta>0$ and $M>0$ such that

$$
|f(b+h)-f(b)|<M|h| \text { for any }|h|<\delta
$$

The proof of chain rule when $g^{\prime}(a)=0$ goes as follows. There exists $\delta>0$ such that

$$
|f(g(a+h))-f(g(a))|<M|g(a+h)-g(a)| \text { for any }|h|<\delta
$$

Therefore

$$
\lim _{h \rightarrow 0}\left|\frac{f(g(a+h))-f(g(a))}{h}\right| \leq \lim _{h \rightarrow 0} M\left|\frac{g(a+h)-g(a)}{h}\right|=0
$$

which implies $(f \circ g)^{\prime}(a)=0$.

Example

The chain rule is used in the following way. Suppose u is a differentiable function of x. Then

$$
\begin{aligned}
\frac{d}{d x} u^{n} & =n u^{n-1} \frac{d u}{d x} \\
\frac{d}{d x} e^{u} & =e^{u} \frac{d u}{d x} \\
\frac{d}{d x} \ln u & =\frac{1}{u} \frac{d u}{d x} \\
\frac{d}{d x} \cos u & =-\sin u \frac{d u}{d x} \\
\frac{d}{d x} \sin u & =\cos u \frac{d u}{d x}
\end{aligned}
$$

Example

1. $\frac{d}{d x} \sin ^{3} x \quad=3 \sin ^{2} x \frac{d}{d x} \sin x=3 \sin ^{2} x \cos x$
2. $\frac{d}{d x} e^{\sqrt{x}} \quad=e^{\sqrt{x}} \frac{d}{d x} \sqrt{x}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$
3. $\frac{d}{d x} \frac{1}{(\ln x)^{2}} \quad=-\frac{2}{(\ln x)^{3}} \frac{d}{d x} \ln x=-\frac{2}{x(\ln x)^{3}}$
4. $\frac{d}{d x} \ln \cos 2 x=\frac{1}{\cos 2 x}(-\sin 2 x) \cdot 2=-\frac{2 \sin 2 x}{\cos 2 x}=-2 \tan 2 x$
5. $\frac{d}{d x} \tan \sqrt{1+x^{2}}=\sec ^{2} \sqrt{1+x^{2}} \cdot \frac{1}{2 \sqrt{1+x^{2}}} \cdot 2 x=\frac{x \sec ^{2} \sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}$
6. $\frac{d}{d x} \sec ^{3} \sqrt{\sin x}=3 \sec ^{2} \sqrt{\sin x}(\sec \sqrt{\sin x} \tan \sqrt{\sin x}) \frac{1}{2 \sqrt{\sin x}} \cdot \cos x$
$=\frac{3 \sec ^{3} \sqrt{\sin x} \tan \sqrt{\sin x} \cos x}{2 \sqrt{\sin x}}$

Example

7. $\frac{d}{d x} \cos ^{4} x \sin x=\cos ^{4} x \cos x+4 \cos ^{3} x(-\sin x) \sin x$
$=\cos ^{5} x-4 \cos ^{3} x \sin ^{2} x$
8. $\frac{d}{d x} \frac{\sec 2 x}{\ln x}=\frac{\ln x(2 \sec 2 x \tan 2 x)-\sec 2 x\left(\frac{1}{x}\right)}{(\ln x)^{2}}$
$=\frac{\sec 2 x(2 x \tan 2 x \ln x-1)}{x(\ln x)^{2}}$
9. $e^{\frac{\tan x}{x}}$
$=e^{\frac{\tan x}{x}}\left(\frac{x \sec ^{2} x-\tan x}{x^{2}}\right)$
10. $\sin \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)=\cos \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)\left(\frac{\sqrt{1+x^{2}}\left(\frac{1}{x}\right)-\ln x\left(\frac{2 x}{2 \sqrt{1+x^{2}}}\right)}{1+x^{2}}\right)$

$$
=\left(\frac{1+x^{2}-x^{2} \ln x}{x\left(1+x^{2}\right)^{\frac{3}{2}}}\right) \cos \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)
$$

Definition (Implicit functions)

An implicit function is an equation of the form $F(x, y)=0$. An implicit function may not define a function. Sometimes it defines a function when the domain and range are specified.

Theorem

Let $F(x, y)=0$ be an implicit function. Then

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

and we have

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

Here $\frac{\partial F}{\partial x}$ is called the partial derivative of F with respect to x which is the derivative of F with respect to x while considering y as constant. Similarly the partial derivative $\frac{\partial F}{\partial y}$ is the derivative of F with respect to y while considering x as constant.

Example

Find $\frac{d y}{d x}$ for the following implicit functions.
(1) $x^{2}-x y-x y^{2}=0$
(2) $\cos \left(x e^{y}\right)+x^{2} \tan y=1$

Solution

$$
\text { 1. } \begin{aligned}
2 x-\left(y+x y^{\prime}\right)-\left(y^{2}+2 x y y^{\prime}\right) & =0 \\
x y^{\prime}+2 x y y^{\prime} & =2 x-y-y^{2} \\
y^{\prime} & =\frac{2 x-y-y^{2}}{x+2 x y}
\end{aligned}
$$

2. $-\sin \left(x e^{y}\right)\left(e^{y}+x e^{y} y^{\prime}\right)+2 x \tan y+x^{2}\left(\sec ^{2} y\right) y^{\prime}=0$

$$
\begin{aligned}
x^{2} y^{\prime} \sec ^{2} y-x e^{y} \sin \left(x e^{y}\right) y^{\prime} & =e^{y} \sin \left(x e^{y}\right)-2 x \tan y \\
y^{\prime} & =\frac{e^{y} \sin \left(x e^{y}\right)-2 x \tan y}{x^{2} \sec ^{2} y-x e^{y} \sin \left(x e^{y}\right)}
\end{aligned}
$$

Theorem

Suppose $f(y)$ is a differentiable function with $f^{\prime}(y) \neq 0$ for any y. Then the inverse function $y=f^{-1}(x)$ of $f(y)$ is differentiable and

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} .
$$

In other words,

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
$$

Proof.

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =x \\
f^{\prime}\left(f^{-1}(x)\right)\left(f^{-1}\right)^{\prime}(x) & =1 \\
\left(f^{-1}\right)^{\prime}(x) & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Theorem

(1) For $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} .
$$

(2) For $\cos ^{-1}:[-1,1] \rightarrow[0, \pi]$,

$$
\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} .
$$

(3) For $\tan ^{-1}: \mathbb{R} \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} .
$$

Proof.

(1)

$$
\begin{aligned}
y & =\sin ^{-1} x \\
\sin y & =x \\
\cos y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} \\
& =\frac{1}{\sqrt{1-\sin ^{2} y}}\left(\text { Note: } \cos y \geq 0 \text { for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\right) \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

The other parts can be proved similarly.

Example

Find $\frac{d y}{d x}$ if $y=x^{x}$.

Solution

There are 2 methods.
Method 1. Note that $y=x^{x}=e^{x \ln x}$. Thus

$$
\frac{d y}{d x}=e^{x \ln x}(1+\ln x)=x^{x}(1+\ln x)
$$

Method 2. Taking logarithm on both sides, we have

$$
\begin{aligned}
\ln y & =x \ln x \\
\frac{1}{y} \frac{d y}{d x} & =1+\ln x \\
\frac{d y}{d x} & =y(1+\ln x) \\
& =x^{x}(1+\ln x)
\end{aligned}
$$

Example

Let u and v be functions of x. Show that

$$
\frac{d}{d x} u^{v}=u^{v} v^{\prime} \ln u+u^{v-1} v u^{\prime}
$$

Proof.

We have

$$
\begin{aligned}
\frac{d}{d x} u^{v} & =\frac{d}{d x} e^{v \ln u} \\
& =e^{v \ln u}\left(v^{\prime} \ln u+v \cdot \frac{u^{\prime}}{u}\right) \\
& =u^{v}\left(v^{\prime} \ln u+\frac{v u^{\prime}}{u}\right) \\
& =u^{v} v^{\prime} \ln u+u^{v-1} v u^{\prime}
\end{aligned}
$$

Second and higher derivatives

Definition (Second and higher derivatives)

Let $y=f(x)$ be a function. The second derivative of $f(x)$ is the function

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

The second derivative of $y=f(x)$ is also denoted as $f^{\prime \prime}(x)$ or $y^{\prime \prime}$. Let n be a non-negative integer. The n-th derivative of $y=f(x)$ is defined inductively by

$$
\begin{aligned}
\frac{d^{n} y}{d x^{n}} & =\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right) \text { for } n \geq 1 \\
\frac{d^{0} y}{d x^{0}} & =y
\end{aligned}
$$

The n-th derivative is also denoted as $f^{(n)}(x)$ or $y^{(n)}$. Note that $f^{(0)}(x)=f(x)$.

Example

Find $\frac{d^{2} y}{d x^{2}}$ for the following functions.
(1) $y=\ln (\sec x+\tan x)$
(2) $x^{2}-y^{2}=1$

Solution

$$
\text { 1. } \begin{aligned}
y^{\prime} & =\frac{1}{\sec x+\tan x}\left(\sec x \tan x+\sec ^{2} x\right) \\
& =\sec x \\
y^{\prime \prime} & =\sec x \tan x
\end{aligned}
$$

2. $2 x-2 y y^{\prime}=0$

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y^{\prime \prime} & =\frac{y-x y^{\prime}}{y^{2}} \\
& =\frac{y-x\left(\frac{x}{y}\right)}{y^{2}} \\
& =\frac{y^{2}-x^{2}}{y^{3}}
\end{aligned}
$$

Theorem (Leinbiz's rule)

Let u and v be differentiable function of x. Then

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(n-k)} v^{(k)}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binormial coefficient.

Example

$$
\begin{aligned}
& (u v)^{(0)}=u^{(0)} v^{(0)} \\
& (u v)^{(1)}=u^{(1)} v^{(0)}+u^{(0)} v^{(1)} \\
& (u v)^{(2)}=u^{(2)} v^{(0)}+2 u^{(1)} v^{(1)}+u^{(0)} v^{(2)} \\
& (u v)^{(3)}=u^{(3)} v^{(0)}+3 u^{(2)} v^{(1)}+3 u^{(1)} v^{(2)}+u^{(0)} v^{(3)} \\
& (u v)^{(4)}=u^{(4)} v^{(0)}+4 u^{(3)} v^{(1)}+6 u^{(2)} v^{(2)}+4 u^{(1)} v^{(3)}+u^{(0)} v^{(4)}
\end{aligned}
$$

Proof

We prove the Leibniz's rule by induction on n. When $n=0$, $(u v)^{(0)}=u v=u^{(0)} v^{(0)}$. Assume that for some nonnegative m,

$$
(u v)^{(m)}=\sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k)}
$$

Then

$$
\begin{aligned}
& (u v)^{(m+1)} \\
= & \frac{d}{d x}(u v)^{(m)} \\
= & \frac{d}{d x} \sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k)} \\
= & \sum_{k=0}^{m}\binom{m}{k}\left(u^{(m-k+1)} v^{(k)}+u^{(m-k)} v^{(k+1)}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k+1)} \\
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=1}^{m+1}\binom{m}{k-1} u^{(m-(k-1))} v^{(k)} \\
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=1}^{m+1}\binom{m}{k-1} u^{(m-k+1)} v^{(k)} \\
& =\sum_{k=0}^{m+1}\left(\binom{m}{k}+\binom{m}{k-1}\right) u^{(m-k+1)} v^{(k)} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} u^{(m+1-k)} v^{(k)}
\end{aligned}
$$

Here we use the convention $\binom{m}{-1}=\binom{m}{m+1}=0$ in the second last equality. This completes the induction step and the proof of the Leibniz's rule.

Example

Let $y=x^{2} e^{3 x}$. Find $y^{(n)}$ where n is a nonnegative integer.

Solution

Let $u=x^{2}$ and $v=e^{3 x}$. Then $u^{(0)}=x^{2}, u^{(1)}=2 x, u^{(2)}=2$ and $u^{(k)}=0$ for $k \geq 3$. On the other hand, $v^{(k)}=3^{k} e^{3 x}$ for any $k \geq 0$. Therefore by Leibniz's rule, we have

$$
\begin{aligned}
y^{(n)} & =\binom{n}{0} u^{(0)} v^{(n)}+\binom{n}{1} u^{(1)} v^{(n-1)}+\binom{n}{2} u^{(2)} v^{(n-2)} \\
& =x^{2}\left(3^{n} e^{3 x}\right)+n(2 x)\left(3^{n-1} e^{3 x}\right)+\frac{n(n-1)}{2!}(2)\left(3^{n-2} e^{3 x}\right) \\
& =\left(3^{n} x^{2}+2 \cdot 3^{n-1} n x+3^{n-2}\left(n^{2}-n\right)\right) e^{3 x} \\
& =3^{n-2}\left(9 x^{2}+6 n x+n^{2}-n\right) e^{3 x}
\end{aligned}
$$

Mean value theorem

Definition (Increasing and decreasing function)
Let $f(x)$ be a function. We say that $f(x)$ is
(1) monotonic increasing (monotonic decreasing), or simply increasing (decreasing), if for any x, y with $x<y$, we have $f(x) \leq f(y)(f(x) \geq f(y))$.
(2) strictly increasing (strictly decreasing) if for any x, y with $x<y$, we have $f(x)<f(y)(f(x)>f(y))$.

Suppose $f(x)$ is a function which is differentiable on (a, b). Determine whether the following statements are always true.
(1) If $f(x)$ attains its maximum or minimum at $x=c \in(a, b)$, then $f^{\prime}(c)=0$.
Answer: T
(2) If $f^{\prime}(c)=0$, then $f(x)$ attains its maximum or minimum at $x=c \in(a, b)$.
Answer: \mathbf{F}
(3) If $f^{\prime}(x)=0$ for any $x \in(a, b)$, then $f(x)$ is constant on (a, b). Answer: T
(4) If $f(x)$ is strictly increasing on (a, b), then $f^{\prime}(x)>0$ for any $x \in(a, b)$.

Answer: F
(5) If $f^{\prime}(x)>0$ for any (a, b), then $f(x)$ is strictly increasing on (a, b). Answer: T
(6) If $f(x)$ is monotonic increasing on (a, b), then $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$.
Answer: T

Theorem

Let f be a function on (a, b) and $c \in(a, b)$ such that
(1) f is differentiable at $x=c$, and
(2) either $f(x) \leq f(c)$ for any $x \in(a, b)$, or $f(x) \geq f(c)$ for any $x \in(a, b)$.

Then $f^{\prime}(c)=0$.

Proof.

Suppose $f(x) \leq f(c)$ for any $x \in(a, b)$. The proof for the other case is essentially the same. For any $h<0$ with $a<c+h<c$, we have $f(c+h)-f(c) \leq 0$ and h is negative. Thus

$$
f^{\prime}(c)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \geq 0
$$

On the other hand, for any $h>0$ with $c<c+h<b$, we have $f(c+h)-f(c) \leq 0$ and h is positive. Thus we have

$$
f^{\prime}(c)=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \leq 0
$$

Therefore $f^{\prime}(c)=0$.

Example

$$
f^{\prime}(x)>0 \text { for any } x
$$

$$
\Downarrow
$$

Strictly increasing

Monotonic increasing $\Leftrightarrow f^{\prime}(x) \geq 0$ for any x

Theorem (Rolle's theorem)

Suppose $f(x)$ is a function which satisfies the following conditions.
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (a, b).
(3) $f(a)=f(b)$

Then there exists $\xi \in(a, b)$ such that $f^{\prime}(\xi)=0$.

Proof.

By extreme value theorem, there exist $a \leq \alpha, \beta \leq b$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta) \text { for any } x \in[a, b]
$$

Since $f(a)=f(b)$, at least one of α, β can be chosen in (a, b) and we let it be ξ. Then we have $f^{\prime}(\xi)=0$ since $f(x)$ attains its maximum or minimum at ξ.

Theorem (Lagrange's mean value theorem)

Suppose $f(x)$ is a function which satisfies the following conditions.
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (a, b).

Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} .
$$

Proof.

Let $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$. Since $g(a)=g(b)=f(a)$, by Rolle's theorem, there exists $\xi \in(a, b)$ such that

$$
g^{\prime}(\xi)=0
$$

$$
f^{\prime}(\xi)-\frac{f(b)-f(a)}{b-a}=0
$$

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Theorem

Let $f(x)$ be a function which is differentiable on (a, b). Then $f(x)$ is monotonic increasing if and only if $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$.

Proof. Suppose $f(x)$ is monotonic increasing on (a, b). Then for any $x \in(a, b)$, we have $f(x+h)-f(x) \geq 0$ for any $h>0$ and thus

$$
f^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \geq 0
$$

On the other hand, suppose $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$. Then for any $\alpha, \beta \in(a, b)$ with $\alpha<\beta$, applying Lagrange's mean value theorem to $f(x)$ on $[\alpha, \beta]$, there exists $\xi \in(\alpha, \beta)$ such that

$$
\frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(\xi)
$$

which implies

$$
f(\beta)-f(\alpha)=f^{\prime}(\xi)(\beta-\alpha) \geq 0
$$

Therefore $f(x)$ is monotonic increasing on (a, b).

Corollary

$f(x)$ is constant on (a, b) if and only if $f^{\prime}(x)=0$ for any $x \in(a, b)$.

Theorem

If $f(x)$ is a differentiable function such that $f^{\prime}(x)>0$ for any $x \in(a, b)$, then $f(x)$ is strictly increasing.

Proof.

Suppose $f^{\prime}(x)>0$ for any $x \in(a, b)$. Then for any $\alpha, \beta \in(a, b)$ with $\alpha<\beta$, apply Lagrange's mean value theorem to $f(x)$ on $[\alpha, \beta]$, there exists $\xi \in(\alpha, \beta)$ such that

$$
\frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(\xi)
$$

which implies

$$
f(\beta)-f(\alpha)=f^{\prime}(\xi)(\beta-\alpha)>0
$$

Therefore $f(x)$ is strictly increasing on (a, b).
The converse of the above theorem is false.

Example

$f(x)=x^{3}$ is strictly increasing on \mathbb{R} but $f^{\prime}(0)=0$ is not positive.

Example

Prove that $1-\frac{1}{x} \leq \ln x \leq x-1$ for any $x>0$.
Solution. Let $f(x)=\ln x-\left(1-\frac{1}{x}\right)$. Then $f^{\prime}(x)=\frac{1}{x}-\frac{1}{x^{2}}=\frac{x-1}{x^{2}}$. Now $f^{\prime}(1)=0$ and

	$0<x<1$	$x>1$
$f^{\prime}(x)$	-	+

Therefore $f(x)$ attains its minimum at $x=1$ and we have $f(x)=\ln x-\frac{x-1}{x} \geq f(1)=0$ for any $x>0$. On the other hand, let $g(x)=x-1-\ln x$. Then $g^{\prime}(x)=1-\frac{1}{x}=\frac{x-1}{x}$. Now $g^{\prime}(1)=0$ and

	$0<x<1$	$x>1$
$f^{\prime}(x)$	-	+

Therefore $g(x)$ attains its minimum at $x=1$ and we have $g(x)=x-1-\ln x \geq g(1)=0$ for any $x>0$.

Example

Let $0<\alpha<1$. Prove that

$$
1+\alpha x-\frac{\alpha(1-\alpha) x^{2}}{2}<(1+x)^{\alpha}<1+\alpha x, \text { for any } x>0
$$

Solution. Let $f(x)=1+\alpha x-(1+x)^{\alpha}$. Then $f(0)=0$ and for any $x>0$,

$$
f^{\prime}(x)=\alpha-\frac{\alpha}{(1+x)^{1-\alpha}}>\alpha-\alpha=0
$$

Therefore $f(x)>0$ for any $x>0$. On the other hand, let

$$
\begin{aligned}
g(x)=(1+x)^{\alpha}-(1+ & \left.\alpha x-\frac{\alpha(1-\alpha) x^{2}}{2}\right) . \text { Then } g(0)=0 \text { and for any } x>0 \\
g^{\prime}(x) & =\frac{\alpha}{(1+x)^{1-\alpha}}-\alpha+\alpha(1-\alpha) x \\
& >\frac{\alpha}{1+(1-\alpha) x}-\alpha(1-(1-\alpha) x) \\
& =\frac{\alpha(1-\alpha)^{2} x^{2}}{1+(1-\alpha) x}>0
\end{aligned}
$$

Therefore $g(x)>0$ for any $x>0$.

Theorem (Cauchy's mean value theorem)

Suppose $f(x)$ and $g(x)$ are functions which satisfies the following conditions.
(1) $f(x), g(x)$ is continuous on $[a, b]$.
(2) $f(x), g(x)$ is differentiable on (a, b).
(3) $g^{\prime}(x) \neq 0$ for any $x \in(a, b)$.

Then there exists $\xi \in(a, b)$ such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof. Let $h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$.
Since $h(a)=h(b)=f(a)$, by Rolle's theorem, there exists $\xi \in(a, b)$ such that

$$
\begin{aligned}
f^{\prime}(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(\xi) & =0 \\
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} & =\frac{f(b)-f(a)}{g(b)-g(a)}
\end{aligned}
$$

L'Hopital's rule

Theorem (L'Hopital's rule)

Let $a \in[-\infty,+\infty]$. Suppose f and g are differentiable functions such that
(1) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ (or $\pm \infty$).
(2) $g^{\prime}(x) \neq 0$ for any $x \neq a$ (on a neighborhood of a).
(3) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.

Then the limit of $\frac{f(x)}{g(x)}$ at $x=a$ exists and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$.

Proof.

We give here the proof for $a \in(-\infty,+\infty)$. For any $x \neq a$, by applying Cauchy's mean value theorem to $f(x), g(x)$ on $[a, x]$ or $[x, a]$, there exists ξ between a and x such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f(x)}{g(x)}
$$

Here we redefine $f(a)=g(a)=0$, if necessary, so that f and g are continuous at a. Note that $\xi \rightarrow a$ as $x \rightarrow a$. We have

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=L
$$

Example (Indeterminate form of types $\frac{0}{0}$ and $\frac{\infty}{\infty}$)

1. $\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x^{3}}=\lim _{x \rightarrow 0} \frac{x \sin x}{3 x^{2}}=\frac{1}{3}$
2. $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln \sec x} \quad=\lim _{x \rightarrow 0} \frac{2 x}{\frac{\sec x \tan x}{\sec x}}=\lim _{x \rightarrow 0} \frac{2 x}{\tan x}=\lim _{x \rightarrow 0} \frac{2}{\sec ^{2} x}=2$
3. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x-\sin x}=\lim _{x \rightarrow 0} \frac{\frac{3 x^{2}}{1+x^{3}}}{1-\cos x}=\lim _{x \rightarrow 0} \frac{3}{1+x^{3}} \lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$

$$
=3 \lim _{x \rightarrow 0} \frac{2 x}{\sin x}=6
$$

4. $\lim _{x \rightarrow+\infty} \frac{\ln \left(1+x^{4}\right)}{\ln \left(1+x^{2}\right)}=\lim _{x \rightarrow+\infty} \frac{\frac{4 x^{3}}{1+x^{4}}}{\frac{2 x}{1+x^{2}}}=\lim _{x \rightarrow+\infty} \frac{4 x^{3}\left(1+x^{2}\right)}{2 x\left(1+x^{4}\right)}=2$

Example (Indeterminate form of types $\infty-\infty$ and $0 \cdot \infty$)

5. $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1) \ln x}=\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}$

$$
=\lim _{x \rightarrow 1} \frac{x-1}{x-1+x \ln x}=\lim _{x \rightarrow 1} \frac{1}{2+\ln x}=\frac{1}{2}
$$

6. $\lim _{x \rightarrow 0} \cot 3 x \tan ^{-1} x=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{\tan 3 x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{3 \sec ^{2} 3 x}$
$=\lim _{x \rightarrow 0} \frac{1}{3\left(1+x^{2}\right) \sec ^{2} 3 x}=\frac{1}{3}$
7. $\lim _{x \rightarrow 0^{+}} x \ln \sin x$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\ln \sin x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2} \cos x}{\sin x}=0
\end{aligned}
$$

8. $\lim _{x \rightarrow+\infty} x \ln \left(\frac{x+1}{x-1}\right)=\lim _{x \rightarrow+\infty} \frac{\ln (x+1)-\ln (x-1)}{\frac{1}{x}}$

$$
=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x+1}-\frac{1}{x-1}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{(x+1)(x-1)}=2
$$

Example (Indeterminate form of types $0^{0}, 1^{\infty}$ and ∞^{0})

Evaluate the following limits.

(1) $\lim _{x \rightarrow 0^{+}} x^{\sin x}$
(2) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$
(3) $\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{1}{3 \ln x}}$

Solution

(1) $\ln \left(\lim _{x \rightarrow 0^{+}} x^{\sin x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{\sin x}\right)=\lim _{x \rightarrow 0^{+}} \sin x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x \cos x}=0$.
Thus $\lim _{x \rightarrow 0^{+}} x^{\sin x}=e^{0}=1$.
(2) $\ln \left(\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}\right)=\lim _{x \rightarrow 0} \ln (\cos x)^{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} \frac{\ln \cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\tan x}{2 x}$
$=\lim _{x \rightarrow 0} \frac{-\sec ^{2} x}{2}=-\frac{1}{2}$.
Thus $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}=e^{-\frac{1}{2}}$.
(3) $\ln \left(\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{3}{\ln x}}\right)=\lim _{x \rightarrow+\infty} \frac{3 \ln (1+2 x)}{\ln x}=\lim _{x \rightarrow+\infty} \frac{\frac{6}{1+2 x}}{\frac{1}{x}}=3$.

Thus $\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{1}{3 \ln x}}=e^{3}$.

Example

The following shows some wrong use of L'Hopital rule. 1.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sec x-1}{e^{2 x}-1} & =\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}} \\
& =\lim _{x \rightarrow 0} \frac{\sec ^{2} x \tan x+\sec ^{3} x}{4 e^{2 x}} \\
& =\frac{1}{4}
\end{aligned}
$$

This is wrong because $\lim _{x \rightarrow 0} e^{2 x} \neq 0, \pm \infty$. One cannot apply
L'Hopital rule to $\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}}$. The correct solution is

$$
\lim _{x \rightarrow 0} \frac{\sec x-1}{e^{2 x}-1}=\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}}=0
$$

Example

2.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{5 x-2 \cos ^{2} x}{3 x+\sin ^{2} x} & =\lim _{x \rightarrow+\infty} \frac{5+2 \cos x \sin x}{3+\sin x \cos x} \\
& =\lim _{x \rightarrow+\infty} \frac{2\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos ^{2} x-\sin ^{2} x} \\
& =2
\end{aligned}
$$

This is wrong because $\lim _{x \rightarrow+\infty}(5+2 \cos x \sin x)$ and
$\lim _{x \rightarrow+\infty}(3+\cos x \sin x)$ do not exist. One cannot apply L'Hopital rule to $\lim _{x \rightarrow+\infty} \frac{5+2 \cos x \sin x}{3+\sin x \cos x}$. The correct solution is

$$
\lim _{x \rightarrow+\infty} \frac{5 x-2 \cos ^{2} x}{3 x+\sin ^{2} x}=\lim _{x \rightarrow+\infty} \frac{5-\frac{2 \cos ^{2} x}{x}}{3+\frac{\sin ^{2} x}{x}}=\frac{5}{3}
$$

Taylor series

Definition (Taylor polynomial)

Let $f(x)$ be a function such that the n-th derivative exists at $x=a$. The
Taylor polynomial of degree n of $f(x)$ at $x=a$ is the polynomial

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Theorem

The Taylor polynomial $p_{n}(x)$ of degree n of $f(x)$ at $x=a$ is the unique polynomial such that

$$
p_{n}^{(k)}(a)=f^{(k)}(a) \text { for } k=0,1,2, \ldots, n
$$

Example

Find the Taylor polynomial $p_{3}(x)$ of degree 3 of $f(x)=\sqrt{1+x}=(1+x)^{\frac{1}{2}}$ at $x=0$.
Solution. The derivatives $f^{(k)}(x)$ up to order 3 are

k	0	1	2	3
$f^{(k)}(x)$	$(1+x)^{\frac{1}{2}}$	$\frac{1}{2}(1+x)^{-\frac{1}{2}}$	$-\frac{1}{4}(1+x)^{-\frac{3}{2}}$	$\frac{3}{8}(1+x)^{-\frac{5}{2}}$
$f^{(k)}(0)$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{3}{8}$

Therefore the Taylor polynomial of $f(x)$ of degree 3 at $x=0$ is

$$
\begin{aligned}
p_{3}(x) & =f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{(3)}(0) \frac{x^{3}}{3!} \\
& =1+\left(\frac{1}{2}\right) x+\left(-\frac{1}{4}\right) \frac{x^{2}}{2!}+\left(\frac{3}{8}\right) \frac{x^{3}}{3!} \\
& =1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\sqrt{1+x}$ at $x=0$

Example

Let $f(x)=\cos x$. The first few derivatives are

k	0	1	2	3	4
$f^{(k)}(x)$	$\cos x$	$-\sin x$	$-\cos x$	$-\sin x$	$\cos x$
$f^{(k)}(0)$	1	0	-1	0	1

We see that

$$
f^{(n)}(x)=\left\{\begin{array}{ll}
(-1)^{k} \cos x, & \text { if } n=2 k \\
(-1)^{k} \sin x, & \text { if } n=2 k-1
\end{array} \text { and } f^{(n)}(0)= \begin{cases}(-1)^{k}, & \text { if } n=2 k \\
0, & \text { if } n=2 k-1\end{cases}\right.
$$

Therefore the Taylor polynomial of $f(x)$ of degree $n=2 k$ at $x=0$ is

$$
\begin{aligned}
p_{2 k}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\cdots+\frac{f^{(2 k) x^{2 k}}(0)}{(2 k)!} \\
& =1+(0) x+\frac{(-1) x^{2}}{2!}+\frac{(0) x^{3}}{3!}+\frac{(1) x^{4}}{4!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\cos x$ at $x=0$

Example

Find the Taylor polynomial of degree n of $f(x)=\frac{1}{x}$ at $x=1$.
Solution. The derivatives $f^{(k)}(x)$ are

k	0	1	2	3	\cdots	n
$f^{(k)}(x)$	x^{-1}	$-x^{-2}$	$2 x^{-3}$	$-6 x^{-4}$	\cdots	$(-1)^{n} n!x^{-(n+1)}$
$f^{(k)}(1)$	1	-1	2	-6	\cdots	$(-1)^{n} n!$

Therefore the Taylor polynomial of $f(x)$ of degree n at $x=1$ is

$$
\begin{aligned}
p_{n}(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)(x-1)^{2}}{2!}+\cdots+\frac{f^{(n)}(1)(x-1)^{n}}{n!} \\
& =1-(x-1)+\frac{2(x-1)^{2}}{2!}+\frac{(-6)(x-1)^{3}}{3!}+\cdots+\frac{(-1)^{n} n!(x-1)^{n}}{n!} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots+(-1)^{n}(x-1)^{n}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\frac{1}{x}$ at $x=1$

Example

Find the Taylor polynomial of $f(x)=(1+x)^{\alpha}$ at $x=0$, where $\alpha \in \mathbb{R}$. Solution. The derivatives are

$$
\begin{aligned}
f(x) & =(1+x)^{\alpha} \\
f^{\prime}(x) & =\alpha(1+x)^{\alpha-1} \\
f^{\prime \prime}(x) & =\alpha(\alpha-1)(1+x)^{\alpha-2} \\
f^{\prime \prime \prime}(x) & =\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3} \\
& \vdots \\
f^{(k)}(x) & =\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)(1+x)^{\alpha-k}
\end{aligned}
$$

Example

Thus we have

$$
\begin{aligned}
f(0) & =1 \\
f^{\prime}(0) & =\alpha \\
f^{\prime \prime}(0) & =\alpha(\alpha-1) \\
& \vdots \\
f^{(k)}(0) & =\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)
\end{aligned}
$$

Therefore the Taylor polynomial of $f(x)=(1+x)^{\alpha}$ of degree n at $x=0$ is

$$
\begin{aligned}
p_{n}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{(3)}(0) x^{3}}{3!}+\cdots+\frac{f^{(n)}(0) x^{n}}{n!} \\
& =1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\cdots+\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1) x^{n}}{n!} \\
& =\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}
\end{aligned}
$$

where

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)}{n!}
$$

Example

The Taylor polynomials of degree n for $f(x)$ at $x=0$.
$f(x) \quad$ Taylor polynomial

$$
\begin{array}{cl}
e^{x} & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
\cos x & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}, n=2 k \\
\sin x & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, n=2 k+1 \\
\ln (1+x) & x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n+1} x^{n}}{n} \\
\frac{1}{1-x} & 1+x+x^{2}+x^{3}+\cdots+x^{n} \\
\sqrt{1+x} & 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots+\frac{(-1)^{n+1}(2 n-3)!!x^{n}}{2^{n} n!} \\
(1+x)^{\alpha} & 1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\cdots+\binom{\alpha}{n} x^{n}
\end{array}
$$

Example

The Taylor polynomials of degree n for $f(x)$ at $x=a$.

$$
\begin{array}{cl}
f(x) & \text { Taylor polynomial } \\
\cos x ; a=\pi & -1+\frac{(x-\pi)^{2}}{2!}-\frac{(x-\pi)^{4}}{4!}+\cdots+\frac{(-1)^{k+1}(x-\pi)^{2 k}}{(2 k)!} \\
e^{x} ; a=2 & e^{2}+e^{2}(x-2)+\frac{e^{2}(x-2)^{2}}{2!}+\cdots+\frac{e^{2}(x-2)^{n}}{n!} \\
\frac{1}{x} ; x=1 & 1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots+(-1)^{n}(x-1)^{n} \\
\frac{1}{2+x} ; a=0 & \frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}+\cdots+\frac{(-1)^{n} x^{n}}{2^{n+1}} \\
\frac{1}{3-2 x} ; x=1 & 1+2(x-1)+4(x-1)^{2}+8(x-1)^{3}+\cdots+2^{n}(x-1)^{n} \\
\sqrt{100-2 x} ; a=0 & 10-\frac{x}{10}-\frac{x^{2}}{2000}-\frac{x^{3}}{200000}-\cdots-\frac{(2 n-3)!!x^{n}}{10^{2 n-1} n!}
\end{array}
$$

Definition (Taylor series)

Let $f(x)$ be an infinitely differentiable function. The Taylor series of $f(x)$ at $x=a$ is the infinite power series

$$
T(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots
$$

Example

The following table shows the Taylor series for $f(x)$ at $x=a$.

$$
\begin{array}{cl}
f(x) & \text { Taylor series } \\
e^{x} ; a=0 & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\cos x ; a=0 & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x ; a=\pi & -(x-\pi)+\frac{(x-\pi)^{3}}{3!}-\frac{(x-\pi)^{5}}{5!}+\cdots \\
\ln x ; a=1 & (x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots \\
\sqrt{1+x} ; a=0 & 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots \\
\frac{1}{\sqrt{1+x}} ; a=0 & 1-\frac{x}{2}+\frac{3 x^{2}}{8}-\frac{5 x^{3}}{16}+\frac{35 x^{4}}{128}-\frac{63 x^{5}}{256}+\cdots \\
(1+x)^{\alpha} ; a=0 & 1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\cdots
\end{array}
$$

$$
\begin{array}{cl}
e^{x} ; & \sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\cos x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\ln (1+x) ; & \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
\frac{1}{1-x} ; & \sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots \\
(1+x)^{\alpha} ; & \sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}=1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\cdots \\
\tan ^{-1} x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
\sin ^{-1} x ; & \sum_{k=0}^{\infty} \frac{(2 k)!x^{2 k+1}}{4^{k}(k!)^{2}(2 k+1)}=x+\left(\frac{1}{2}\right) \frac{x^{3}}{3}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right) \frac{x^{5}}{5}+\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right) \frac{x^{7}}{7}+\cdots
\end{array}
$$

Theorem

Suppose $T(x)$ is the Taylor series of $f(x)$ at $x=0$. Then for any positive integer k, the Taylor series for $f\left(x^{k}\right)$ at $x=0$ is $T\left(x^{k}\right)$.

Example

$$
\begin{array}{ll}
f(x) & \text { Taylor series at } x=0 \\
\frac{1}{1+x^{2}} & 1-x^{2}+x^{4}-x^{6}+\cdots \\
\frac{1}{\sqrt{1-x^{2}}} & 1+\frac{x^{2}}{2}+\frac{3 x^{4}}{8}+\frac{5 x^{6}}{16}+\frac{35 x^{8}}{128}+\cdots \\
\frac{\sin x^{2}}{x^{2}} & 1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\frac{x^{12}}{7!}+\cdots
\end{array}
$$

Theorem

Suppose the Taylor series for $f(x)$ at $x=0$ is

$$
T(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots .
$$

Then the Taylor series for $f^{\prime}(x)$ is

$$
T^{\prime}(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots .
$$

Example

Find the Taylor series of the following functions.
(1) $\frac{1}{(1+x)^{2}}$
(2) $\tan ^{-1} x$

Solution

(1) Let $F(x)=-\frac{1}{1+x}$ so that $F^{\prime}(x)=\frac{1}{(1+x)^{2}}$. The Taylor series for $F(x)$ at $x=0$ is

$$
T(x)=-1+x-x^{2}+x^{3}-x^{4}+\cdots
$$

Therefore the Taylor series for $F^{\prime}(x)=\frac{1}{(1+x)^{2}}$ is

$$
T^{\prime}(x)=1-2 x+3 x^{2}-4 x^{3}+\cdots
$$

Solution

2. Suppose the Taylor series for $f(x)=\tan ^{-1} x$ at $x=0$ is

$$
T(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \cdots
$$

Now comparing $T^{\prime}(x)$ with the Taylor series for $f^{\prime}(x)=\frac{1}{1+x^{2}}$ which takes the form

$$
1-x^{2}+x^{4}-x^{6}+\cdots
$$

we obtain the values of $a_{1}, a_{2}, a_{3}, \ldots$ and get

$$
T(x)=a_{0}+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Since $a_{0}=f(0)=0$, we have

$$
T(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Theorem

Suppose the Taylor series for $f(x)$ and $g(x)$ at $x=0$ are

$$
\begin{aligned}
& S(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& T(x)=\sum_{k=0}^{\infty} b_{k} x^{k}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots
\end{aligned}
$$

respectively. Then the Taylor series for $f(x) g(x)$ at $x=0$ is

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} \\
= & a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots
\end{aligned}
$$

Proof.

The coefficient of x^{n} of the Taylor series of $f(x) g(x)$ at $x=0$ is

$$
\begin{aligned}
\frac{(f g)^{(n)}(0)}{n!} & =\sum_{k=0}^{n}\binom{n}{k} \frac{f^{(k)}(0) g^{(n-k)}(0)}{n!} \quad \text { (Leibniz's formula) } \\
& =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot \frac{f^{(k)}(0) g^{(n-k)}(0)}{n!} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot \frac{g^{(n-k)}(0)}{(n-k)!} \\
& =\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

Example

(1) The Taylor series for $e^{4 x} \ln (1+x)$ is

$$
\begin{aligned}
& \left(1+4 x+\frac{16 x^{2}}{2!}+\frac{64 x^{3}}{3!}+\cdots\right)\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right) \\
= & x+\left(-\frac{1}{2}+4\right) x^{2}+\left(\frac{1}{3}+4 \cdot\left(-\frac{1}{2}\right)+8\right) x^{3}+\cdots \\
= & x+\frac{7 x^{2}}{2}+\frac{19 x^{3}}{3}+\cdots
\end{aligned}
$$

(2) The Taylor series for $\frac{\tan ^{-1} x}{\sqrt{1-x^{2}}}$ is

$$
\begin{aligned}
& \left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{8}+\cdots\right) \\
= & x+\left(\frac{1}{2}-\frac{1}{3}\right) x^{3}+\left(\frac{3}{4}-\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{5}\right) x^{5}+\cdots \\
= & x+\frac{x^{3}}{6}+\frac{49 x^{5}}{120}+\cdots
\end{aligned}
$$

Theorem

Suppose $f(x)$ and $g(x)$ are infinitely differentiable functions and the Taylor series of $f(x)$ and $g(x)$ at $x=0$ are

$$
a_{k} x^{k}+a_{k+1} x^{k+1}+a_{k+2} x^{k+2}+\cdots
$$

and

$$
b_{k} x^{k}+b_{k+1} x^{k+1}+b_{k+2} x^{k+2}+\cdots
$$

where $b_{k} \neq 0$. Then

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow 0} \frac{a_{k}+a_{k+1} x+a_{k+2} x^{2}+\cdots}{b_{k}+b_{k+1} x+b_{k+2} x^{2}+\cdots} \\
& =\frac{a_{k}}{b_{k}}
\end{aligned}
$$

Proof.

The assumptions on $f(x)$ and $g(x)$ imply that

$$
\begin{aligned}
& f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{(k-1)}(0)=0 ; f^{(k)}(0)=a_{k} \\
& g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=\cdots=g^{(k-1)}(0)=0 ; g^{(k)}(0)=b_{k}
\end{aligned}
$$

Therefore, by L'Hopital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\cdots=\lim _{x \rightarrow 0} \frac{f^{(k)}(x)}{g^{(k)}(x)}=\frac{a_{k}}{b_{k}}
$$

Example

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (1+x)-x \sqrt{1-x}}{x-\sin x} \\
= & \lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)-x\left(1-\frac{x}{2}-\frac{x^{2}}{8}+\cdots\right)}{x-\left(x-\frac{x^{3}}{6}+\cdots\right)} \\
= & \lim _{x \rightarrow 0} \frac{\frac{11 x^{3}}{24}+\cdots}{\frac{x^{3}}{6}+\cdots} \\
= & \frac{11}{4} \\
2 . & \lim _{x \rightarrow 0}\left(\frac{e^{x}}{x}-\frac{1}{\tan x}\right)=\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x \cos x}{x \sin x} \\
= & \lim _{x \rightarrow 0} \frac{\left(1+x+\frac{x^{2}}{2}+\cdots\right)\left(x-\frac{x^{3}}{6}+\cdots\right)-x\left(1-\frac{x^{2}}{2}+\cdots\right)}{x\left(x-\frac{x^{3}}{6}+\cdots\right)} \\
= & \lim _{x \rightarrow 0} \frac{\left(x+x^{2}+\frac{x^{3}}{3}+\cdots\right)-\left(x-\frac{x^{3}}{2}+\cdots\right)}{x^{2}-\frac{x^{4}}{6}+\cdots} \\
= & \lim _{x \rightarrow 0} \frac{x^{2}+\frac{5 x^{3}}{6}+\cdots}{x^{2}-\frac{x^{4}}{6}+\cdots} \\
= & 1
\end{aligned}
\end{aligned}
$$

Curve sketching

To sketch the graph of $y=f(x)$, one first finds

- Domain: The values of x where $f(x)$ is defined.
- x-intercepts: The values of x such that $f(x)=0$.
- y-intercept: $f(0)$
- Horizontal asymptotes:

If $\lim _{x \rightarrow-\infty /+\infty} f(x)=b$, then $y=b$ is a horizontal asymptote.

- Vertical asymptotes:

If $\lim _{x \rightarrow a^{-} / a^{+}} f(x)=-\infty /+\infty$, then $x=a$ is a vertical asymptote.

Example 1: $f(x)=\frac{3 x+5}{x+2}$

Example 2: $f(x)=\frac{x^{2}+2}{x^{2}+1}$

Example 3: $f(x)=\frac{x}{|x|+1}$

Example 4: $f(x)=|\ln | x| |$

Definition (Oblique asymptote)

If

$$
\lim _{x \rightarrow-\infty /+\infty}(f(x)-(a x+b))=0,
$$

we say that $y=a x+b$ is an oblique asymptote of $y=f(x)$.

Example 5: $f(x)=\frac{x^{2}-3 x-4}{x-2}$.
Note that $\frac{x^{2}-3 x-4}{x-2}=\frac{x^{2}-2 x-(x-2)-6}{x-2}=x-1-\frac{6}{x-2}$.

Definition

Let $f(x)$ be a continuous function. We say that $f(x)$ has a
(1) local maximum at $x=a$ if there exists $\delta>0$ such that $f(x) \leq f(a)$ for any $x \in(a-\delta, a+\delta)$.
(2) local minimum at $x=a$ if there exists $\delta>0$ such that $f(x) \geq f(a)$ for any $x \in(a-\delta, a+\delta)$.

Theorem

Let $f(x)$ be a continuous function. Suppose $f(x)$ has local maximum or local minimum at $x=a$. Then either
(1) $f^{\prime}(a)=0$, or
(2) $f^{\prime}(x)$ does not exist at $x=a$.

Theorem (First derivative test)

Let $f(x)$ be a continuous function and $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist. Suppose there is $\delta>0$ such that

(1) | | $a-\delta<x<a$ | $a<x<a+\delta$ |
| :---: | :---: | :---: |
| $f^{\prime}(x)$ | + | - |

Then $f(x)$ has a local maximum at $x=a$.

22 | | $a-\delta<x<a$ | $a<x<a+\delta$ |
| :---: | :---: | :---: |
| $f^{\prime}(x)$ | - | + |

Then $f(x)$ has a local minimum at $x=a$.

Theorem (Second derivative test)

Let $f(x)$ be a differentiable function and $f^{\prime}(a)=0$.
(1) If $f^{\prime \prime}(a)<0$, then $f(x)$ has a local maximum at $x=a$.

(2) If $f^{\prime \prime}(a)>0$, then $f(x)$ has a local minimum at $x=a$.

$$
f^{\prime \prime}(a)>0
$$

Definition (Turning point)

We say that $f(x)$ has a turning point at $x=a$ if $f^{\prime}(x)$ changes sign at $x=a$.

If $f(x)$ has a turning point at $x=a$, then either $f^{\prime}(a)=0$ or $f^{\prime}(x)$ does not exist.

Turning point	$f^{\prime}(a)=0$	$f^{\prime}(a)$ does not exist
Relative maximum		
Relative minimum		

Example 6: $f(x)=\frac{x-3}{x^{2}+4 x-5}$
$f(x)=\frac{x-3}{(x-1)(x+5)}, x \neq-5,1$
$f^{\prime}(x)=\frac{\left(x^{2}+4 x-5\right)(1)-(x-3)(2 x+4)}{(x-1)^{2}(x+5)^{2}}=-\frac{(x+1)(x-7)}{(x-1)^{2}(x+5)^{2}}$
Thus $f^{\prime}(x)=0$ when $x=-1,7$.

	$x<-5$	$-5<x<-1$	$-1<x<1$	$1<x<7$	$x>7$
$f^{\prime}(x)$	-	-	+	+	-

$\left(-1, \frac{1}{2}\right)$ is a minimum point and $\left(7, \frac{1}{18}\right)$ is a maximum point.

Example: $f(x)=\frac{x-3}{x^{2}+4 x-5}$.

Definition (Concavity)

We say that $f(x)$ is
(1) Concave upward on (a, b) if $f^{\prime \prime}(x)>0$ on (a, b).
(2) Concave downward on (a, b) if $f^{\prime \prime}(x)<0$ on (a, b).

	$f^{\prime}(x)>0$	$f^{\prime}(x)<0$
Concave upward $\left(f^{\prime \prime}(x)>0\right)$		
Concave downward $\left(f^{\prime \prime}(x)<0\right)$		

Definition (Inflection point)

We say that $f(x)$ has an inflection point at $x=a$ if $f^{\prime \prime}(x)$ changes sign at $x=a$.

If $f(x)$ has an inflection point at $x=a$, then ether $f^{\prime \prime}(a)=0$ or $f^{\prime \prime}(a)$ does not exist.

Example 7: $f(x)=|x+1|(3-x)$
$f(x)=|x+1|(3-x)= \begin{cases}(x+1)(x-3) & \text { if } x<-1 \\ -(x+1)(x-3) & \text { if } x \geq-1\end{cases}$

Example 8: $f(x)=x+\frac{1}{|x|}$
Since $\lim _{x \rightarrow \pm \infty}(f(x)-x)=\lim _{x \rightarrow \pm \infty} \frac{1}{|x|}=0$,
$y=f(x)$ has an oblique asymptote $y=x$.
When $x<0, f(x)=x-\frac{1}{x}$.
$f^{\prime}(x)=1+\frac{1}{x^{2}}$
$f^{\prime \prime}(x)=-\frac{2}{x^{3}}$
When $x>0, f(x)=x+\frac{1}{x}$.
$f^{\prime}(x)=1-\frac{1}{x^{2}}$
$f^{\prime \prime}(x)=\frac{2}{x^{3}}$

	$x<0$	$0<x<1$	$x>1$
$f^{\prime}(x)$	+	-	+
$f^{\prime \prime}(x)$	+	+	+

$f(x)$ has a minimum point at $x=1$.
$f(x)$ has no inflection point.

Example 8: $f(x)=x+\frac{1}{|x|}$

Limits Integration

Example 9: $f(x)=\frac{|2 x+1|}{x-3}$

Example 10: $f(x)=2-(x-8)^{\frac{1}{3}}$
$f^{\prime}(x)=-\frac{1}{3(x-8)^{\frac{2}{3}}}$
$f^{\prime \prime}(x)=\frac{2}{9(x-8)^{\frac{5}{3}}}$
$f^{\prime}(x), f^{\prime \prime}(x)$ do not exist at $x=8$.

	$x<8$	$x>8$
$f^{\prime}(x)$	-	-
$f^{\prime \prime}(x)$	-	+

$f(x)$ has no turning point.
$f(x)$ has an inflection point at $x=8$.

Example 10: $f(x)=2-(x-8)^{\frac{1}{3}}$

Example 11: $f(x)=|1-\sqrt{|x|}|$

Example 12: $f(x)=\frac{x^{2}+x-2}{x^{2}}$
Domain: $x \neq 0$
$f(x)=\frac{x^{2}+x-2}{x^{2}}=1+\frac{x-2}{x^{2}}$
$f(x)$ has a horizontal asymptote $y=1$.
$f^{\prime}(x)=\frac{x^{2}-2 x(x-2)}{x^{4}}=\frac{x-2(x-2)}{x^{3}}=-\frac{x-4}{x^{3}}$
$f^{\prime}(x)=0$ when $x=4$
$f^{\prime \prime}(x)=-\frac{x^{3}-3 x^{2}(x-4)}{x^{6}}=-\frac{x-3(x-4)}{x^{6}}=\frac{2(x-6)}{x^{4}}$
$f^{\prime \prime}(x)=0$ when $x=6$.

	$(-\infty, 0)$	$(0,4)$	$(4,6)$	$(6,+\infty)$
$f^{\prime}(x)$	-	+	-	-
$f^{\prime \prime}(x)$	-	-	-	+

($4, \frac{9}{8}$) is maximum point.
($6, \frac{10}{9}$) is an inflection point.

Example 12: $f(x)=\frac{x^{2}+x-2}{x^{2}}$

Example 12: $f(x)=\frac{x^{2}+x-2}{x^{2}}$

Example 13: $f(x)=\frac{x^{3}}{(x-2)^{2}}$
$f(x)=x+4+\frac{12 x-16}{(x-2)^{2}}, x \neq 2$
$f(x)$ has an oblique asymptote $y=x+4$
$f^{\prime}(x)=\frac{3 x^{2}(x-2)^{2}-2(x-2) x^{3}}{(x-2)^{4}}=\frac{3 x^{2}(x-2)-2 x^{3}}{(x-2)^{3}}=\frac{x^{3}-6 x^{2}}{(x-2)^{3}}$
$f^{\prime}(x)=0$ when $x=0,6$
$f^{\prime \prime}(x)=\frac{\left(3 x^{2}-12 x\right)(x-2)^{3}-3(x-2)^{2}\left(x^{3}-6 x^{2}\right)}{(x-2)^{6}}=\frac{24 x}{(x-2)^{4}}$
$f^{\prime \prime}(x)=0$ when $x=0$.

	$(-\infty, 0)$	$(0,2)$	$(2,6)$	$(6,+\infty)$
$f^{\prime}(x)$	+	+	-	+
$f^{\prime \prime}(x)$	-	+	+	+

($6, \frac{27}{2}$) is minimum point.
$(0,0)$ is an inflection point.

Example 13: $f(x)=\frac{x^{3}}{(x-2)^{2}}$

Example 13: $f(x)=\frac{x^{3}}{(x-2)^{2}}$

Domain :

x-intercept :
0
y-intercept :
0
Vertical asymptote : $x=2$
Oblique asymptote : $y=x+4$
Minimum point :
($6, \frac{27}{2}$)
Inflection point :

Example 14: $f(x)=x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$
First

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}}{x}=\lim _{x \rightarrow \pm \infty}\left(1-\frac{3}{x}\right)^{\frac{2}{3}}=1
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty}(f(x)-x) & =\lim _{x \rightarrow \pm \infty} x\left(\left(1-\frac{3}{x}\right)^{\frac{2}{3}}-1\right) \\
& =\lim _{h \rightarrow 0} \frac{(1-3 h)^{\frac{2}{3}}-1}{h} \\
& =-2
\end{aligned}
$$

Thus $y=x-2$ is an oblique asymptote.

Example 14: $f(x)=x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3} x^{-\frac{2}{3}}(x-3)^{\frac{2}{3}}+\frac{2}{3} x^{\frac{1}{3}}(x-3)^{-\frac{1}{3}} \\
& =\frac{x-1}{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}}
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x=1$ and $f^{\prime}(x)$ does not exist when $x=0,3$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{x^{\frac{2}{3}}(x-3)^{\frac{1}{3}}-\left(\frac{2}{3} x^{-\frac{1}{3}}(x-3)^{\frac{1}{3}}+\frac{1}{3} x^{\frac{2}{3}}(x-3)^{-\frac{2}{3}}\right)(x-1)}{x^{\frac{4}{3}}(x-3)^{\frac{2}{3}}} \\
& =\frac{3 x(x-3)-(2(x-3)+x)(x-1)}{3 x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}} \\
& =-\frac{2}{x^{\frac{5}{3}}(x-3)^{\frac{4}{3}}}
\end{aligned}
$$

$f^{\prime \prime}(x)$ does not exist when $x=0,3$.

	$(-\infty, 0)$	$(0,1)$	$(1,3)$	$(3,+\infty)$
$f^{\prime}(x)$	+	+	-	+
$f^{\prime \prime}(x)$	+	-	-	-

$\left(1,2^{\frac{2}{3}}\right)$ is a maximum point.
$(3,0)$ is a minimum point.
$(0,0)$ is an inflection point.

Example 14: $f(x)=x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$

Example 14: $f(x)=x^{\frac{1}{3}}(x-3)^{\frac{2}{3}}$

Indefinite integral and substitution

Definition

Let $f(x)$ be a continuous function. A primitive function, or an anti-derivative, of $f(x)$ is a function $F(x)$ such that

$$
F^{\prime}(x)=f(x)
$$

The collection of all anti-derivatives of $f(x)$ is called the indefinite integral of $f(x)$ and is denoted by

$$
\int f(x) d x
$$

The function $f(x)$ is called the integrand of the integral.

Note: Anti-derivative of a function is not unique. If $F(x)$ is an anti-derivative of f, then $F(x)+C$ is an anti-derivative of $f(x)$ for any constant C. Moreover, any anti-derivative of $f(x)$ is of the form $F(x)+C$ and we write

$$
\int f(x) d x=F(x)+C
$$

where C is arbitrary constant called the integration constant. Note that $\int f(x) d x$ is not a single function but a collection of functions.

Theorem

Let $f(x)$ and $g(x)$ be continuous functions and k be a constant.
(1) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
(2) $\int k f(x) d x=k \int f(x) d x$

Theorem (formulas for indefinite integrals)

$$
\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 & \\
\int e^{x} d x=e^{x}+C ; & \int \frac{1}{x} d x=\ln |x|+C \\
\int \cos x d x=\sin x+C ; & \int \sin x d x=-\cos x+C \\
\int \sec ^{2} x d x=\tan x+C ; & \int \csc ^{2} x d x=-\cot x+C \\
\int \sec x \tan x d x=\sec x+C ; & \int \csc x \cot x d x=-\csc x+C
\end{array}
$$

Example

1. $\int\left(x^{3}-x+5\right) d x=\frac{x^{4}}{4}-\frac{x^{2}}{2}+5 x+C$
2. $\int \frac{(x+1)^{2}}{x} d x=\int \frac{x^{2}+2 x+1}{x} d x$
$=\int\left(x+2+\frac{1}{x}\right) d x$
$=\frac{x^{2}}{2}+2 x+\ln |x|+C$
3. $\int \frac{3 x^{2}+\sqrt{x}-1}{\sqrt{x}} d x=\int\left(3 x^{3 / 2}+1-x^{-1 / 2}\right) d x$
$=\frac{6}{5} x^{\frac{5}{2}}+x-2 x^{\frac{1}{2}}+C$
4. $\int\left(\frac{3 \sin x}{\cos ^{2} x}-2 e^{x}\right) d x=\int\left(3 \sec x \tan x-2 e^{x}\right) d x$
$=3 \sec x-2 e^{x}+C$

Example

Suppose we want to compute

$$
\int x \sqrt{x^{2}+4} d x
$$

First we let

$$
u=x^{2}+4
$$

We may formally write

$$
d u=\frac{d u}{d x} d x=\left[\frac{d}{d x}\left(x^{2}+4\right)\right] d x=2 x d x
$$

Here $d u$ is called the differential of u defined as $\frac{d u}{d x} d x$. Thus the integral is

$$
\begin{aligned}
\int x \sqrt{x^{2}+4} d x & =\frac{1}{2} \int \sqrt{x^{2}+4}(2 x d x)=\frac{1}{2} \int \sqrt{u} d u \\
& =\frac{u^{\frac{3}{2}}}{3}+C=\frac{\left(x^{2}+4\right)^{\frac{3}{2}}}{3}+C
\end{aligned}
$$

Example

$$
\begin{aligned}
\int x \sqrt{x^{2}+4} d x & =\int \sqrt{x^{2}+4} d\left(\frac{x^{2}}{2}\right) \\
& =\frac{1}{2} \int \sqrt{x^{2}+4} d x^{2} \\
& =\frac{1}{2} \int \sqrt{x^{2}+4} d\left(x^{2}+4\right) \\
& =\frac{\left(x^{2}+4\right)^{\frac{3}{2}}}{3}+C
\end{aligned}
$$

Theorem

Let $f(x)$ be a continuous function defined on $[a, b]$. Suppose there exists a differentiable function $u=\varphi(x)$ and continuous function $g(u)$ such that $f(x)=g(\varphi(x)) \varphi^{\prime}(x)$ for any $x \in(a, b)$. Then

$$
\begin{aligned}
\int f(x) d x & =\int g(\varphi(x)) \varphi^{\prime}(x) d x \\
& =\int g(u) d u
\end{aligned}
$$

Example

$$
\begin{aligned}
& \int x^{2} e^{x^{3}+1} d x \\
& \text { Let } u=x^{3}+1, \\
& \text { then } d u=3 x^{2} d x \\
= & \frac{1}{3} \int e^{u} d u \\
= & \frac{e^{u}}{3}+C \\
= & \frac{e^{x^{3}+1}}{3}+C
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
& \int \cos ^{4} x \sin x d x & & \int \cos ^{4} x \sin x d x \\
& \text { Let } u=\cos x, & = & =-\int \cos ^{4} x d(-\cos x) \\
& \text { then } d u=-\sin x d x & & =-\frac{\cos ^{5} x}{5}+C \\
= & -\int u^{4} d u & & \\
= & -\frac{u^{5}}{5}+C &
\end{array}
$$

Example

$$
\begin{array}{rlr}
& \int \frac{d x}{x \ln x} & \\
& \text { Let } u=\ln x, & = \\
& \text { then } d u=\frac{d x}{x \ln x} \\
= & \int \frac{d u}{u} & \\
= & \ln |u| \ln x \mid+C \\
= & \ln |\ln x|+C & \\
\hline
\end{array}
$$

Example

$$
\begin{array}{rlr}
& \int \frac{d x}{e^{x}+1} & \int \frac{d x}{e^{x}+1} \\
& \text { Let } u=1+e^{-x}, & =\int\left(1-\frac{1}{1}\right. \\
& \text { then } d u=-e^{-x} d x & =x-\int \frac{d e}{1+} \\
= & \int \frac{e^{-x} d x}{1+e^{-x}} & \\
= & -\int \frac{d u}{u} & \\
= & -\ln u+C & \\
= & x-\ln \left(1+e^{-x}\right)+C & \\
= & &
\end{array}
$$

Example

$$
\begin{aligned}
& \int \frac{d x}{1+\sqrt{x}} \\
& \text { Let } u=1+\sqrt{x}, \\
& \text { then } d u=\frac{d x}{2 \sqrt{x}} \\
= & 2 \int \frac{(u-1) d u}{u} \\
= & 2 \int\left(1-\frac{1}{u}\right) d u \\
= & 2 u-2 \ln u+C^{\prime} \\
= & 2 \sqrt{x}-2 \ln (1+\sqrt{x})+C
\end{aligned}
$$

Definite integral

Definition

Let $f(x)$ be a function on $[a, b]$. A Partition of $[a, b]$ is a set of finite points

$$
P=\left\{x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b\right\}
$$

and we define

$$
\begin{aligned}
\Delta x_{k} & =x_{k}-x_{k-1}, \text { for } k=1,2, \ldots, n \\
\|P\| & =\max _{1 \leq k \leq n}\left\{\Delta x_{k}\right\}
\end{aligned}
$$

Definition

Let $f(x)$ be a function on $[a, b]$. The lower and upper Riemann sums with respect to partition P are

$$
\mathcal{L}(f, P)=\sum_{k=1}^{n} m_{k} \Delta x_{k}, \text { and } \mathcal{U}(f, P)=\sum_{k=1}^{n} M_{k} \Delta x_{k}
$$

where

$$
m_{k}=\inf \left\{f(x): x_{k-1} \leq x \leq x_{k}\right\}, \text { and } M_{k}=\sup \left\{f(x): x_{k-1} \leq x \leq x_{k}\right\}
$$

Figure: Upper and lower Riemann sum

Figure: Upper and lower Riemann sum

Definition (Riemann integral)

Let $[a, b]$ be a closed and bounded interval and $f:[a, b] \rightarrow \mathbb{R}$ be a real valued function defined on $[a, b]$. We say that $f(x)$ is
Riemann integrable on $[a, b]$ if the limits of $\mathcal{L}(f, P)$ and $\mathcal{U}(f, P)$ exist as $\|P\|$ tends to 0 and are equal. In this case, we define the Riemann integral of $f(x)$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \mathcal{L}(f, P)=\lim _{\|P\| \rightarrow 0} \mathcal{U}(f, P)
$$

Note: We say that $\lim _{\|P\| \rightarrow 0} \mathcal{L}(f, P)=L$ if for any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that if $\|P\|<\delta$, then $|\mathcal{L}(f, P)-L|<\varepsilon$.

Theorem

Let $f(x)$ and $g(x)$ be integrable functions on $[a, b], a<c<b$ and k be constants.
(1) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(2) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
(3) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
(4) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$

Theorem

Suppose $f(x)$ is a continuous function on $[a, b]$. Then $f(x)$ is Riemann integrable on $[a, b]$ and we have

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+\frac{k}{n}(b-a)\right)\left(\frac{b-a}{n}\right) .
\end{aligned}
$$

Figure: Formula for Riemann integral

Example

Use the formula for definite integral of continuous function to evaluate

$$
\int_{0}^{1} x^{2} d x
$$

Solution

$$
\begin{aligned}
\int_{0}^{1} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(0+\frac{k}{n}(1-0)\right)^{2}\left(\frac{1-0}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}} \\
& =\frac{1}{3}
\end{aligned}
$$

Fundamental theorem of calculus

Theorem (Fundamental theorem of calculus)

First part: Let $f(x)$ be a function which is continuous on $[a, b]$. Let $F:[a, b] \rightarrow \mathbb{R}$ be the function defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then $F(x)$ is continuous on $[a, b]$, differentiable on (a, b) and

$$
F^{\prime}(x)=f(x)
$$

for any $x \in(a, b)$. Put in another way, we have

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \text { for } x \in(a, b)
$$

Theorem (Fundamental theorem of calculus)

Second part: Let $f(x)$ be a function which is continuous on $[a, b]$. Let $F(x)$ be a primitive function of $f(x)$, in other words, $F(x)$ is a continuous function on $[a, b]$ and $F^{\prime}(x)=f(x)$ for any $x \in(a, b)$. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Example

Let $f(x)=\sqrt{1-x^{2}}$. The graph of $y=f(x)$ is a unit semicircle centered at the origin. Using the formula for area of circular sectors, we calculate

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} \sqrt{1-t^{2}} d t=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\sin ^{-1} x}{2}
$$

By fundamental theorem of calculus, we know that $F(x)$ is an anti-derivative of $f(x)$. One may check this by differentiating $F(x)$ and get

$$
\begin{aligned}
F^{\prime}(x) & =\frac{1}{2}\left(\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-x^{2}}}\right) \\
& =\frac{1}{2}\left(\frac{1-x^{2}-x^{2}+1}{\sqrt{1-x^{2}}}\right) \\
& =\sqrt{1-x^{2}} \\
& =f(x)
\end{aligned}
$$

Figure: $\int_{0}^{x} \sqrt{1-t^{2}} d t=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\sin ^{-1} x}{2}$

Example

$$
\left.\begin{array}{l}
\text { 1. } \begin{array}{rl}
\int_{1}^{3}\left(x^{3}-4 x+5\right) d x & =\left[\frac{x^{4}}{4}-2 x^{2}+5 x\right]_{1}^{3} \\
& =\left[\left(\frac{3^{4}}{4}-2\left(3^{2}\right)+5(3)\right)-\left(\frac{1^{4}}{4}-2\left(1^{2}\right)+5(1)\right)\right] \\
& =14 \\
\text { 2. } \int_{-3}^{0} e^{2 x+6} d x & =\left[\frac{e^{2 x+6}}{2}\right]_{-3}^{0} \\
\text { 3. } \int_{0}^{\frac{\pi}{12}} \sec ^{2} 3 x d x & =\left[\frac{e^{6}-1}{2}\right. \\
& \left.=\frac{\tan 3 x}{3}\right]_{0}^{\frac{\pi}{12}} \\
& =\frac{1}{3}
\end{array}, l=\tan 0 \\
12
\end{array}\right)
$$

The fundamental theorem of calculus can be used to evaluate limit of series of a certain form.

Theorem

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+\cdots+f\left(\frac{n}{n}\right)\right) \\
= & \int_{0}^{1} f(x) d x
\end{aligned}
$$

Example

Find
(1) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k}=\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)$
(2) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\cdots+\frac{n}{n^{2}+n^{2}}\right)$
(3) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\cdots+\frac{1}{\sqrt{2 n}}\right)$

Example

1. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k} \quad=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}}$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{1}{1+x} d x=[\ln (1+x)]_{0}^{1} \\
& =\ln 2
\end{aligned}
$$

2. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\left(\frac{k}{n}\right)^{2}}$
$=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}$
$=\frac{\pi}{4}$
3. $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1+\frac{k}{n}}}$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{1}{\sqrt{1+x}} d x=[2 \sqrt{1+x}]_{0}^{1} \\
& =2(\sqrt{2}-1)
\end{aligned}
$$

Example

Find $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(n+1)(n+2) \cdots(2 n)}}{n}$.

Solution

$$
\begin{aligned}
& \ln \left(\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(n+1)(n+2) \cdots(2 n)}}{n}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\frac{(n+1)(n+2) \cdots(2 n)}{n^{n}}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n}\left(\ln \left(1+\frac{1}{n}\right)+\ln \left(1+\frac{2}{n}\right)+\cdots+\ln \left(1+\frac{n}{n}\right)\right) \\
= & \int_{0}^{1} \ln (1+x) d x \\
= & {[(1+x) \ln (1+x)-x]_{0}^{1} } \\
= & 2 \ln 2-1
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(n+1)(n+2) \cdots(2 n)}}{n}=e^{2 \ln 2-1}=\frac{4}{e} \approx 1.4715
$$

Example (Definite integral and substitution)

$$
\text { 1. } \begin{aligned}
& \int_{3}^{5} x \sqrt{x^{2}-9} d x \\
& \int_{3}^{5} x \sqrt{x^{2}-9} d x \\
& \text { When } x=x^{2}-9, \\
& =\frac{1}{2} \int_{3}^{5} \sqrt{x^{2}-9} d\left(x^{2}-9\right) \\
& \text { When } x=5, u=16 \\
& =\frac{1}{3}\left[\left(x^{2}-9\right)^{\frac{3}{2}}\right]_{3}^{5} \\
= & \frac{1}{2} \int_{0}^{16} \sqrt{u} d u \\
= & \\
{\left[\frac{u^{\frac{3}{2}}}{3}\right]_{0}^{16} } & \\
= & \frac{64}{3}
\end{aligned}
$$

Example (Definite integral and substitution)

2. $\quad \int_{0}^{\pi^{2}} \frac{\sin \sqrt{x}}{\sqrt{x}} d x$

Let $u=\sqrt{x}$,
When $x=0, u=0$
When $x=\pi^{2}, u=\pi$
$d u=\frac{d x}{2 \sqrt{x}}$
$=2 \int_{0}^{\pi} \sin u d u$
$=2[-\cos u]_{0}^{\pi}$
$=4$

$$
-4
$$

$$
\begin{aligned}
& \int_{0}^{\pi^{2}} \frac{\sin \sqrt{x}}{\sqrt{x}} d x \\
= & 2 \int_{0}^{\pi^{2}} \sin \sqrt{x} d \sqrt{x} \\
= & 2[-\cos \sqrt{x}]_{0}^{\pi^{2}} \\
= & 2\left[-\cos \sqrt{\pi^{2}}-(-\cos 0)\right] \\
= & 4
\end{aligned}
$$

Example

We have the following formulas for derivatives of functions defined by integrals.
(1) $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
(2) $\frac{d}{d x} \int_{x}^{b} f(t) d t=-f(x)$
(3) $\frac{d}{d x} \int_{a}^{v(x)} f(t) d t=f(v) \frac{d v}{d x}$
(4) $\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=f(v) \frac{d v}{d x}-f(u) \frac{d u}{d x}$

Proof.

1. This is the first part of fundamental theorem of calculus.
2. $\frac{d}{d x} \int_{x}^{b} f(t) d t=\frac{d}{d x}\left(-\int_{b}^{x} f(t) d t\right)$

$$
=-f(x)
$$

3. $\frac{d}{d x} \int_{a}^{v(x)} f(t) d t=\left(\frac{d}{d v} \int_{a}^{v(x)} f(t) d t\right) \frac{d v}{d x}$

$$
=f(v) \frac{d v}{d x}
$$

4. $\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=\frac{d}{d x}\left(\int_{c}^{v(x)} f(t) d t+\int_{u(x)}^{c} f(t) d t\right)$
$=\frac{d}{d x}\left(\int_{c}^{v(x)} f(t) d t-\int_{c}^{u(x)} f(t) d t\right)$
$=f(v) \frac{d v}{d x}-f(u) \frac{d u}{d x}$

Example

Find $F^{\prime}(x)$ for the the functions.
(1) $F(x)=\int_{1}^{x} \sqrt{t} e^{t} d t$
(2) $F(x)=\int_{x}^{\pi} \frac{\sin t}{t} d t$
(3) $F(x)=\int_{0}^{\sin x} \sqrt{1+t^{4}} d t$
(4) $F(x)=\int_{-x}^{x^{2}} e^{t^{2}} d t$

Solution

1. $\frac{d}{d x} \int_{1}^{x} \sqrt{t} e^{t} d t \quad=\sqrt{x} e^{x}$
2. $\frac{d}{d x} \int_{x}^{\pi} \frac{\sin t}{t} d t=-\frac{\sin x}{x}$
3. $\frac{d}{d x} \int_{0}^{\sin x} \sqrt{1+t^{4}} d t=\sqrt{1+\sin ^{4} x} \frac{d}{d x} \sin x$
4. $\begin{aligned} & =\cos x \sqrt{1+\sin ^{4} x} \\ \int_{-x}^{x^{2}} e^{t^{2}} d t & =e^{\left(x^{2}\right)^{2}} \frac{d}{d x} x^{2}-e^{(-x)^{2}} \frac{d}{d x}(-x)\end{aligned}$
$=2 x e^{x^{4}}+e^{x^{2}}$

Trigonometric integrals

Techniques

Useful identities for trigonometric integrals.
(1) $\cos ^{2} x+\sin ^{2} x=1$

- $\sec ^{2} x=1+\tan ^{2} x$
- $\csc ^{2} x=1+\cot ^{2} x$
(2) $\cos ^{2} x=\frac{1+\cos 2 x}{2}$
- $\sin ^{2} x=\frac{1-\cos 2 x}{2}$
- $\cos x \sin x=\frac{\sin 2 x}{2}$
(3) $\quad \cos x \cos y=\frac{1}{2}(\cos (x+y)+\cos (x-y))$
- $\cos x \sin y=\frac{1}{2}(\sin (x+y)-\sin (x-y))$
- $\sin x \sin y=\frac{1}{2}(\cos (x-y)-\cos (x+y))$

Techniques

To evaluate

$$
\int \cos ^{m} x \sin ^{n} x d x
$$

where m, n are non-negative integers,

- Case 1. If m is odd, use $\cos x d x=d \sin x$. (Substitute $u=\sin x$.)
- Case 2. If n is odd, use $\sin x d x=-d \cos x$. (Substitute $u=\cos x$.)
- Case 3. If both m, n are even, then use double angle formulas to reduce the power.

$$
\begin{aligned}
\cos ^{2} x & =\frac{1+\cos 2 x}{2} \\
\sin ^{2} x & =\frac{1-\cos 2 x}{2} \\
\cos x \sin x & =\frac{\sin 2 x}{2}
\end{aligned}
$$

Techniques

(1) $\int \tan x d x=\ln |\sec x|+C$
(2) $\int \cot x d x=\ln |\sin x|+C$
(3) $\int \sec x d x=\ln |\sec x+\tan x|+C$
(9) $\int \csc x d x=\ln |\csc x-\cot x|+C$

Proof

We prove (1), (3) and the rest are left as exercise.

1. $\int \tan x d x=\int \frac{\sin x d x}{\cos x}$

$$
\begin{aligned}
& =-\int \frac{d \cos x}{\cos x} \\
& =-\ln |\cos x|+C \\
& =\ln |\sec x|+C
\end{aligned}
$$

3. $\int \sec x d x=\int \frac{\sec x(\sec x+\tan x) d x}{(\sec x+\tan x)}$
$=\int \frac{\left(\sec ^{2} x+\sec x \tan x\right) d x}{(\sec x+\tan x)}$
$=\int \frac{d(\tan x+\sec x)}{(\sec x+\tan x)}$
$=\ln |\sec x+\tan x|+C$

Techniques

To evaluate

$$
\int \sec ^{m} x \tan ^{n} x d x
$$

where m, n are non-negative integers,

- Case 1. If m is even, use $\sec ^{2} x d x=d \tan x$. (Substitute $u=\tan x$.)
- Case 2. If n is odd, use $\sec x \tan x d x=d \sec x$. (Substitute $u=\sec x$.)
- Case 3. If both m is odd and n is even, use $\tan ^{2} x=\sec ^{2} x-1$ to write everything in terms of $\sec x$.

Example

Evaluate the following integrals.
(1) $\int \sin ^{2} x d x$
(2) $\int \cos ^{4} 3 x d x$
(3) $\int \cos 2 x \cos x d x$
(4) $\int \cos 3 x \sin 5 x d x$

Solution

1. $\int \sin ^{2} x d x=\int\left(\frac{1-\cos 2 x}{2}\right) d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$
2. $\int \cos ^{4} x d x=\int\left(\frac{1+\cos 2 x}{2}\right)^{2} d x$

$$
=\int\left(\frac{1+2 \cos 2 x+\cos ^{2} 2 x}{4}\right) d x
$$

$$
=\frac{x}{4}+\frac{\sin 2 x}{4}+\int\left(\frac{1+\cos 4 x}{8}\right) d x
$$

$$
=\frac{3 x}{8}+\frac{\sin 2 x}{4}+\frac{\sin 4 x}{32}+C
$$

3. $\int \cos 2 x \cos x d x=\frac{1}{2} \int(\cos 3 x+\cos x) d x=\frac{\sin 3 x}{6}+\frac{\sin x}{2}+C$
4. $\int \cos 3 x \sin 5 x d x=\frac{1}{2} \int(\sin 8 x+\sin 2 x) d x=-\frac{\cos 8 x}{16}-\frac{\cos 2 x}{4}+C$

Example

Evaluate the following integrals.
(1) $\int \cos x \sin ^{4} x d x$
(2) $\int \cos ^{2} x \sin ^{3} x d x$
(3) $\int \cos ^{4} x \sin ^{2} x d x$

Solution

$$
\begin{aligned}
& \text { 1. } \int \cos x \sin ^{4} x d x=\int \sin ^{4} x d \sin x=\frac{\sin ^{5} x}{5}+C \\
& \text { 2. } \int \cos ^{2} x \sin ^{3} x d x=-\int \cos ^{2} x\left(1-\cos ^{2} x\right) d \cos x \\
& =-\int\left(\cos ^{2} x-\cos ^{4} x\right) d \cos x \\
& =-\frac{\cos ^{3} x}{3}+\frac{\cos ^{5} x}{5} C \\
& \text { 3. } \int \cos ^{4} x \sin ^{2} x d x=\int\left(\frac{1+\cos 2 x}{2}\right)\left(\frac{\sin 2 x}{2}\right)^{2} d x \\
& =\frac{1}{8} \int\left(\sin ^{2} 2 x+\cos 2 x \sin ^{2} 2 x\right) d x \\
& =\frac{1}{8} \int\left(\frac{1-\cos 4 x}{2}\right) d x+\frac{1}{16} \int \sin ^{2} 2 x d \sin 2 x \\
& =\frac{x}{16}-\frac{\sin 4 x}{64}+\frac{\sin ^{3} 2 x}{48}+C
\end{aligned}
$$

Example

Evaluate the following integrals.
(1) $\int \sec ^{2} x \tan ^{2} x d x$
(2) $\int \sec x \tan ^{3} x d x$
(3) $\int \tan ^{3} x d x$

Solution

1. $\int \sec ^{2} x \tan ^{2} x d x=\int \tan ^{2} x d \tan x=\frac{\tan ^{3} x}{3}+C$
2. $\int \sec x \tan ^{3} x d x=\int \tan ^{2} x d \sec x=\int\left(\sec ^{2} x-1\right) d \sec x$
$=\frac{\sec ^{3} x}{3}-\sec x+C$
3. $\int \tan ^{3} x d x=\int \tan x\left(\sec ^{2} x-1\right) d x$
$=\int \tan x \sec ^{2} x d x-\int \tan x d x$
$=\int \tan x d \tan x-\ln |\sec x|$
$=\frac{\tan ^{2} x}{2}-\ln |\sec x|+C$

Integration by parts

Techniques

Suppose the integrand is of the form $u(x) v^{\prime}(x)$. Then we may evaluate the integration using the formula

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

The above formula is called integration by parts. It is usually written in the form

$$
\int u d v=u v-\int v d u
$$

Example

Evaluate the following integrals.

1. $\int x e^{3 x} d x$
2. $\int x^{2} \cos x d x$
3. $\int x^{3} \ln x d x$
4. $\int \ln x d x$

Solution

1. $\int x e^{3 x} d x=\frac{1}{3} \int x d e^{3 x}=\frac{x e^{3 x}}{3}-\frac{1}{3} \int e^{3 x} d x$
$=\frac{x e^{3 x}}{3}-\frac{e^{3 x}}{9}+C$
2. $\int x^{2} \cos x d x=\int x^{2} d \sin x$
$=x^{2} \sin x-\int \sin x d x^{2}$
$=x^{2} \sin x-2 \int x \sin x d x$
$=x^{2} \sin x+2 \int x d \cos x$
$=x^{2} \sin x+2 x \cos x-2 \int \cos x d x$
$=x^{2} \sin x+2 x \cos x-2 \sin x+C$

Solution

$$
\begin{aligned}
& \text { 3. } \int x^{3} \ln x d x=\frac{1}{4} \int \ln x d x^{4} \\
& =\frac{x^{4} \ln x}{4}-\frac{1}{4} \int x^{4} d \ln x \\
& =\frac{x^{4} \ln x}{4}-\frac{1}{4} \int x^{4}\left(\frac{1}{x}\right) d x \\
& =\frac{x^{4} \ln x}{4}-\frac{1}{4} \int x^{3} d x \\
& =\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}+C \\
& \text { 4. } \int \ln x d x=x \ln x-\int x d \ln x \\
& =x \ln x-\int d x \\
& =x \ln x-x+C
\end{aligned}
$$

Example

Evaluate the following integrals.
5. $\int_{0}^{\pi} x \sin x d x$
6. $\int_{0}^{1} e^{\sqrt{x}} d x$

Solution

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
\int_{0}^{\pi} x \sin x d x & =-\int_{0}^{\pi} x d \cos x \\
& =-[x \cos x]_{0}^{\pi}+\int_{0}^{\pi} \cos x d x \\
& =-(\pi \cos \pi-0)+[\sin x]_{0}^{\pi} \\
& =\pi \\
6 . \int_{0}^{1} e^{\sqrt{x}} d x & =2 \int_{0}^{1} \sqrt{x} e^{\sqrt{x}} d \sqrt{x} \\
& =2 \int_{0}^{1} \sqrt{x} d e^{\sqrt{x}} \\
& =2\left[\sqrt{x} e^{\sqrt{x}}\right]_{0}^{1}-2 \int_{0}^{1} e^{\sqrt{x}} d \sqrt{x} \\
& =2 e-2\left[e^{\sqrt{x}}\right]_{0}^{1} \\
& =2 e-2(e-1) \\
& =2
\end{aligned} r=\frac{2}{}
\end{aligned}
$$

Example

Evaluate the following integrals.
7. $\int \sin ^{-1} x d x$
8. $\int \ln \left(1+x^{2}\right) d x$
9. $\int \sec ^{3} x d x$
10. $\int e^{x} \sin x d x$

Solution

$$
\begin{aligned}
& \text { 7. } \int \sin ^{-1} x d x=x \sin ^{-1} x-\int x d \sin ^{-1} x \\
& =x \sin ^{-1} x-\int \frac{x d x}{\sqrt{1-x^{2}}} \\
& =x \sin ^{-1} x+\frac{1}{2} \int \frac{d\left(1-x^{2}\right)}{\sqrt{1-x^{2}}} \\
& =x \sin ^{-1} x+\sqrt{1-x^{2}}+C \\
& \text { 8. } \int \ln \left(1+x^{2}\right) d x=x \ln \left(1+x^{2}\right)-\int x d \ln \left(1+x^{2}\right) \\
& =x \ln \left(1+x^{2}\right)-2 \int \frac{x^{2} d x}{1+x^{2}} \\
& =x \ln \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =x \ln \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+C
\end{aligned}
$$

Solution

9. $\int \sec ^{3} x d x=\int \sec x d \tan x$

$$
=\sec x \tan x-\int \tan x d \sec x
$$

$$
=\sec x \tan x-\int \sec x \tan ^{2} x d x
$$

$$
=\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x
$$

$$
=\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x
$$

$$
2 \int \sec ^{3} x d x=\sec x \tan x+\int \sec x d x
$$

$$
\int \sec ^{3} x d x=\frac{\sec x \tan x+\ln |\sec x+\tan x|}{2}+C
$$

Solution

$$
\text { 10. } \begin{aligned}
\int e^{x} \sin x d x & =\int \sin x d e^{x} \\
& =e^{x} \sin x-\int e^{x} d \sin x \\
& =e^{x} \sin x-\int e^{x} \cos x d x \\
& =e^{x} \sin x-\int \cos x d e^{x} \\
& =e^{x} \sin x-e^{x} \cos x+\int e^{x} d \cos x \\
& =e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x \\
2 \int e^{x} \sin x d x & =e^{x} \sin x-e^{x} \cos x+C^{\prime} \\
\int e^{x} \sin x d x & =\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+C
\end{aligned}
$$

Reduction formula

Techniques

For integral of the forms

$$
\begin{aligned}
I_{n}= & \int \cos ^{n} x d x, \int \sin ^{n} x d x, \int x^{n} \cos x d x, \int x^{n} \sin x d x \\
& \int \sec ^{n} x d x, \int \csc ^{n} x d x, \int x^{n} e^{x} d x, \int(\ln x)^{n} d x \\
& \int e^{x} \cos ^{n} x d x, \int e^{x} \sin ^{n} x d x, \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}, \int \frac{d x}{\left(a^{2}-x^{2}\right)^{n}},
\end{aligned}
$$

we may use integration by parts to find a formula to express I_{n} in terms of I_{k} with $k<n$. Such a formula is called reduction formula.

Example

Let

$$
I_{n}=\int x^{n} \cos x d x
$$

for positive integer n. Prove that

$$
I_{n}=x^{n} \sin x+n x^{n-1} \cos x-n(n-1) I_{n-2}, \text { for } n \geq 2
$$

Proof.

$$
\begin{aligned}
I_{n}=\int x^{n} \cos x d x & =\int x^{n} d \sin x \\
& =x^{n} \sin x-\int \sin x d x^{n} \\
& =x^{n} \sin x-n \int x^{n-1} \sin x d x \\
& =x^{n} \sin x+n \int x^{n-1} d \cos x \\
& =x^{n} \sin x+n x^{n-1} \cos x-n \int \cos x d x^{n-1} \\
& =x^{n} \sin x+n x^{n-1} \cos x-n(n-1) \int x^{n-2} \cos x d x \\
& =x^{n} \sin x+n x^{n-1} \cos x-n(n-1) I_{n-2}
\end{aligned}
$$

Example

Let

$$
I_{n}=\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}
$$

where $a>0$ is a positive real number for positive integer n. Prove that

$$
I_{n}=\frac{x}{2 a^{2}(n-1)\left(x^{2}+a^{2}\right)^{n-1}}+\frac{2 n-3}{2 a^{2}(n-1)} I_{n-1}, \text { for } n \geq 2
$$

Proof

$$
\begin{aligned}
I_{n}=\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}} & =\frac{x}{\left(x^{2}+a^{2}\right)^{n}}-\int x d\left(\frac{1}{\left(x^{2}+a^{2}\right)^{n}}\right) \\
& =\frac{x}{\left(x^{2}+a^{2}\right)^{n}}+\int \frac{2 n x^{2} d x}{\left(x^{2}+a^{2}\right)^{n+1}} \\
& =\frac{x}{\left(x^{2}+a^{2}\right)^{n}}+2 n \int \frac{\left(x^{2}+a^{2}-a^{2}\right) d x}{\left(x^{2}+a^{2}\right)^{n+1}} \\
& =\frac{x}{\left(x^{2}+a^{2}\right)^{n}}+2 n \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}-2 n a^{2} \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n+1}} \\
& =\frac{x}{\left(x^{2}+a^{2}\right)^{n}}+2 n I_{n}-2 n a^{2} I_{n+1} \\
I_{n+1} & =\frac{x}{2 n a^{2}\left(x^{2}+a^{2}\right)^{n}}+\frac{2 n-1}{2 n a^{2}} I_{n}
\end{aligned}
$$

Replacing n by $n-1$, we have

$$
I_{n}=\frac{x}{2(n-1) a^{2}\left(x^{2}+a^{2}\right)^{n-1}}+\frac{2 n-3}{2(n-1) a^{2}} I_{n-1}
$$

Alternative proof.

$$
\begin{aligned}
I_{n} & =\frac{1}{a^{2}} \int \frac{x^{2}+a^{2}-x^{2}}{\left(x^{2}+a^{2}\right)^{n}} d x \\
& =\frac{1}{a^{2}} \int\left(\frac{1}{\left(x^{2}+a^{2}\right)^{n-1}}-\frac{x^{2}}{\left(x^{2}+a^{2}\right)^{n}}\right) d x \\
& =\frac{1}{a^{2}} I_{n-1}-\frac{1}{2 a^{2}} \int \frac{x}{\left(x^{2}+a^{2}\right)^{n}} d\left(x^{2}+a^{2}\right) \\
& =\frac{1}{a^{2}} I_{n-1}+\frac{1}{2(n-1) a^{2}} \int x d\left(\frac{1}{\left(x^{2}+a^{2}\right)^{n-1}}\right) \\
& =\frac{1}{a^{2}} I_{n-1}+\frac{x}{2(n-1) a^{2}\left(x^{2}+a^{2}\right)^{n-1}}-\frac{1}{2(n-1) a^{2}} \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n-1}} \\
& =\frac{x}{2(n-1) a^{2}\left(x^{2}+a^{2}\right)^{n-1}}+\left(\frac{1}{a^{2}}-\frac{1}{2(n-1) a^{2}}\right) I_{n-1} \\
& =\frac{x}{2(n-1) a^{2}\left(x^{2}+a^{2}\right)^{n-1}}+\frac{2 n-3}{2(n-1) a^{2}} I_{n-1}
\end{aligned}
$$

Example

Prove the following reduction formula

$$
\int \sin ^{n} x d x=-\frac{1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} \int \sin ^{n-2} x d x
$$

for $n \geq 2$. Hence show that

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\left\{\begin{array}{ll}
\frac{(n-1) \cdot(n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot(n-2) \cdots 7 \cdot 5 \cdot 3} \\
\frac{(n-1) \cdot(n-3) \cdots \cdot 5 \cdot 3}{n \cdot(n-2) \cdots 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}
\end{array} \quad \text { when } n \text { is odd } n\right. \text { is even }
$$

Proof

$$
\begin{aligned}
\int \sin ^{n} x d x & =-\int \sin ^{n-1} x d \cos x \\
& =-\cos x \sin ^{n-1} x+\int \cos x d \sin ^{n-1} x \\
& =-\cos x \sin ^{n-1} x+(n-1) \int \cos ^{2} x \sin ^{n-2} x d x \\
& =-\cos x \sin ^{n-1} x+(n-1) \int\left(1-\sin ^{2} x\right) \sin ^{n-2} x d x \\
n \int \sin ^{n} x d x & =-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x d x \\
\int \sin ^{n} x d x & =-\frac{1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} \int \sin ^{n-2} x d x
\end{aligned}
$$

Proof

Hence when n is odd

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x & =-\left[\frac{1}{n} \cos x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{2}}+\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x \\
& =\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x \\
& =\left(\frac{n-1}{n}\right)\left(\frac{n-3}{n-2}\right) \int_{0}^{\frac{\pi}{2}} \sin ^{n-4} x d x \\
& \vdots \\
& =\frac{(n-1) \cdot(n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot(n-2) \cdots 7 \cdot 5 \cdot 3} \int_{0}^{\frac{\pi}{2}} \sin x d x \\
& =\frac{(n-1) \cdot(n-3) \cdots 6 \cdot 4 \cdot 2}{n \cdot(n-2) \cdots 7 \cdot 5 \cdot 3}
\end{aligned}
$$

Proof.

when n is even

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x & =-\left[\frac{1}{n} \cos x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{2}}+\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x \\
& =\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x \\
& =\left(\frac{n-1}{n}\right)\left(\frac{n-3}{n-2}\right) \int_{0}^{\frac{\pi}{2}} \sin ^{n-4} x d x \\
& \vdots \\
& =\frac{(n-1) \cdot(n-3) \cdots 7 \cdot 5 \cdot 3}{n \cdot(n-2) \cdots 6 \cdot 4 \cdot 2} \int_{0}^{\frac{\pi}{2}} d x \\
& =\frac{(n-1) \cdot(n-3) \cdots 7 \cdot 5 \cdot 3}{n \cdot(n-2) \cdots 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}
\end{aligned}
$$

Example

$$
\begin{array}{ll}
I_{n}=\int x^{n} e^{x} d x ; & I_{n}=x^{n} e^{x}-n I_{n-1}, n \geq 1 \\
I_{n}=\int(\ln x)^{n} d x ; & I_{n}=x(\ln x)^{n}-n I_{n-1}, n \geq 1 \\
I_{n}=\int x^{n} \sin x d x ; & I_{n}=-x^{n} \cos x+n x^{n-1} \sin x-n(n-1) I_{n-2}, n \geq 2 \\
I_{n}=\int \cos ^{n} x d x ; & I_{n}=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} I_{n-2}, n \geq 2 \\
I_{n}=\int \sec ^{n} x d x ; & I_{n}=\frac{\sec ^{n-2} x \tan x}{n-1}+\frac{n-2}{n-1} I_{n-2}, n \geq 2 \\
I_{n}=\int e^{x} \cos ^{n} x d x ; & I_{n}=\frac{e^{x} \cos ^{n-1} x(\cos x+n \sin x)}{n^{2}+1}+\frac{n(n-1)}{n^{2}+1} I_{n-2}, n \geq 2 \\
I_{n}=\int e^{x} \sin ^{n} x d x ; & I_{n}=\frac{e^{x} \sin ^{n-1} x(\sin x-n \cos x)}{n^{2}+1}+\frac{n(n-1)}{n^{2}+1} I_{n-2}, n \geq 2 \\
I_{n}=\int x^{n} \sqrt{x+a} d x ; & I_{n}=\frac{2 x^{n}(x+a)^{\frac{3}{2}}}{2 n+3}-\frac{2 n a}{2 n+3} I_{n-1}, n \geq 1 \\
I_{n}=\int \frac{x^{n}}{\sqrt{x+a}} d x ; & I_{n}=\frac{2 x^{n} \sqrt{x+a}}{2 n+1}-\frac{2 n a}{2 n+1} I_{n-1}, n \geq 1
\end{array}
$$

Trigonometric substitution

Techniques (Trigonometric substitution)

Expression	Substitution	$d x$	Trigonometric ratios
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$d x=a \cos \theta d \theta$	$\begin{aligned} & \cos \theta=\frac{\sqrt{a^{2}-x^{2}}}{a} \\ & \sin \theta=\frac{x}{a} \\ & \tan \theta=\frac{x}{\sqrt{a^{2}-x^{2}}} \end{aligned}$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$d x=a \sec ^{2} \theta d \theta$	$\begin{aligned} & \cos \theta=\frac{a}{\sqrt{a^{2}+x^{2}}} \\ & \sin \theta=\frac{x}{\sqrt{a^{2}+x^{2}}} \\ & \tan \theta=\frac{x}{a} \end{aligned}$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$d x=a \sec \theta \tan \theta d \theta$	

Theorem

(1) $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C$
(2) $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
(3) $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{|a|} \cos ^{-1}\left|\frac{a}{x}\right|+C$

Proof

1. Let $x=a \sin \theta$. Then

$$
\begin{aligned}
\sqrt{a^{2}-x^{2}} & =\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=a \cos \theta \\
d x & =a \cos \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\int \frac{1}{a \cos \theta}(a \cos \theta d \theta) \\
& =\int d \theta \\
& =\theta+C \\
& =\sin ^{-1} \frac{x}{a}+C
\end{aligned}
$$

Proof

2. Let $x=a \tan \theta$. Then

$$
\begin{aligned}
a^{2}+x^{2} & =a^{2}+a^{2} \tan ^{2} \theta=a^{2} \sec ^{2} \theta \\
d x & =a \sec ^{2} \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{a^{2}+x^{2}} d x & =\int \frac{1}{a^{2} \sec ^{2} \theta}\left(a \sec ^{2} \theta d \theta\right) \\
& =\frac{1}{a} \int d \theta \\
& =\frac{\theta}{a}+C \\
& =\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
\end{aligned}
$$

Proof.

3. Let's assume a and x are positive and let $x=a \sec \theta$. Then

$$
\begin{aligned}
x \sqrt{x^{2}-a^{2}} & =a \sec \theta \sqrt{a^{2} \sec ^{2} \theta-a^{2}}=a^{2} \sec \theta \tan \theta \\
d x & =a \sec \theta \tan \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x & =\int \frac{1}{a^{2} \sec \theta \tan \theta}(a \sec \theta \tan \theta d \theta) \\
& =\frac{1}{a} \int d \theta \\
& =\frac{\theta}{a}+C \\
& =\frac{1}{a} \cos ^{-1} \frac{a}{x}+C
\end{aligned}
$$

Note that $\theta=\cos ^{-1} \frac{a}{x}$ since $\cos \theta=\frac{1}{\sec \theta}=\frac{a}{x}$.

Example

Use trigonometric substitution to evaluate the following integrals.
(1) $\int \sqrt{1-x^{2}} d x$
(2) $\int \frac{1}{\sqrt{1+x^{2}}} d x$
(3) $\int \frac{x^{3}}{\sqrt{4-x^{2}}} d x$
(9) $\int \frac{1}{\left(9+x^{2}\right)^{2}} d x$

Solution

1. Let $x=\sin \theta$. Then

$$
\begin{aligned}
\sqrt{1-x^{2}} & =\sqrt{1-\sin ^{2} \theta}=\cos \theta \\
d x & =\cos \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\int \cos ^{2} \theta d \theta \\
& =\int \frac{\cos 2 \theta+1}{2} d \theta \\
& =\frac{\sin 2 \theta}{4}+\frac{\theta}{2}+C \\
& =\frac{\sin \theta \cos \theta}{2}+\frac{\sin ^{-1} x}{2}+C \\
& =\frac{x \sqrt{1-x^{2}}}{2}+\frac{\sin ^{-1} x}{2}+C
\end{aligned}
$$

Solution

2. Let $x=\tan \theta$. Then

$$
\begin{aligned}
1+x^{2} & =1+\tan ^{2} \theta=\sec ^{2} \theta \\
d x & =\sec ^{2} \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{\sqrt{1+x^{2}}} d x & =\int \frac{1}{\sec x}\left(\sec ^{2} \theta d \theta\right) \\
& =\int \sec \theta d \theta \\
& =\ln |\tan \theta+\sec \theta|+C \\
& =\ln \left(x+\sqrt{1+x^{2}}\right)+C
\end{aligned}
$$

Solution

3. Let $x=2 \sin \theta$. Then

$$
\begin{aligned}
\sqrt{4-x^{2}} & =\sqrt{4-4 \sin ^{2} \theta}=2 \cos \theta \\
d x & =2 \cos \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{4-x^{2}}} d x & =\int \frac{8 \sin ^{3} \theta}{2 \cos \theta}(2 \cos \theta d \theta) \\
& =8 \int \sin ^{3} \theta d \theta \\
& =-8 \int\left(1-\cos ^{2} \theta\right) d \cos \theta \\
& =8\left(\frac{\cos ^{3} \theta}{3}-\cos \theta\right)+C \\
& =\frac{\left(4-x^{2}\right)^{\frac{3}{2}}}{3}-4\left(4-x^{2}\right)^{\frac{1}{2}}+C
\end{aligned}
$$

Solution

4. Let $x=3 \tan \theta$. Then

$$
\begin{aligned}
9+x^{2} & =9+9 \tan ^{2} \theta=9 \sec ^{2} \theta \\
d x & =3 \sec ^{2} \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{1}{\left(9+x^{2}\right)^{2}} d x & =\int \frac{1}{81 \sec ^{4} \theta}\left(3 \sec ^{2} \theta d \theta\right)=\frac{1}{27} \int \cos ^{2} \theta d \theta \\
& =\frac{1}{54} \int(\cos 2 \theta+1) d \theta=\frac{1}{54}\left(\frac{\sin 2 \theta}{2}+\theta\right)+C \\
& =\frac{1}{54}(\cos \theta \sin \theta+\theta)+C \\
& =\frac{1}{54}\left(\frac{3}{\sqrt{9+x^{2}}} \cdot \frac{x}{\sqrt{9+x^{2}}}+\tan ^{-1} \frac{x}{3}\right)+C \\
& =\frac{x}{18\left(9+x^{2}\right)}+\frac{1}{54} \tan ^{-1} \frac{x}{3}+C
\end{aligned}
$$

Integration of rational functions

Definition (Rational functions)

A rational function is a function of the form

$$
R(x)=\frac{f(x)}{g(x)}
$$

where $f(x), g(x)$ are polynomials with real coefficients with $g(x) \neq 0$.

Techniques

We can integrate a rational function $R(x)$ with the following two steps.
(1) Find the partial fraction decomposition of $R(x)$, that is, express

$$
R(x)=q(x)+\sum \frac{A}{(x-\alpha)^{k}}+\sum \frac{B(x+a)}{\left((x+a)^{2}+b^{2}\right)^{k}}+\sum \frac{C}{\left((x+a)^{2}+b^{2}\right)^{k}}
$$

where $q(x)$ is a polynomial, A, B, C, α, a, b represent real numbers and k represents positive integer.
(2) Integrate the partial fraction.

Theorem

Let $R(x)=\frac{f(x)}{g(x)}$ be a rational function. We may assume that the leading coefficient of $g(x)$ is 1 .
(1) (Division algorithm for polynomials) There exists polynomials $q(x), r(x)$ with $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$ such that

$$
R(x)=q(x)+\frac{r(x)}{g(x)}
$$

$q(x)$ and $r(x)$ are the quotient and remainder of the division $f(x)$ by $g(x)$.
(2) (Fundamental theorem of algebra for real polynomials) $g(x)$ can be written as a product of linear or quadratic polynomials. More precisely, there exists real numbers $\alpha_{1}, \ldots, \alpha_{m}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ and positive integers $k_{1}, \ldots, k_{m}, l_{1}, \ldots, l_{n}$ such that

$$
\left.g(x)=\left(x-\alpha_{1}\right)^{k_{1}} \cdots\left(x-\alpha_{k}\right)^{k_{m}}\left(\left(x+a_{1}\right)^{2}+b_{1}^{2}\right)^{l_{1}} \cdots\left(\left(x+a_{n}\right)^{2}+b\right)_{n}^{2}\right)^{l_{n}}
$$

Techniques

Partial fractions can be integrated using the formulas below.

$$
\begin{aligned}
& \text { } \int \frac{d x}{(x-\alpha)^{k}}= \begin{cases}\ln |x-\alpha|+C, & \text { if } k=1 \\
-\frac{1}{(k-1)(x-\alpha)^{k-1}}+C, & \text { if } k>1\end{cases} \\
& 0 \int \frac{x d x}{\left(x^{2}+a^{2}\right)^{k}}= \begin{cases}\frac{1}{2} \ln \left(x^{2}+a^{2}\right)+C, & \text { if } k=1 \\
-\frac{1}{2(k-1)\left(x^{2}+a^{2}\right)^{k-1}}+C, & \text { if } k>1\end{cases} \\
& 0 \int \frac{d x}{\left(x^{2}+a^{2}\right)^{k}} \\
& = \begin{cases}\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, & \text { if } k=1 \\
\frac{x}{2 a^{2}(k-1)\left(x^{2}+a^{2}\right)^{k-1}}+\frac{2 k-3}{2 a^{2}(k-1)} \int \frac{d x}{\left(x^{2}+a^{2}\right)^{k-1}}, & \text { if } k>1\end{cases}
\end{aligned}
$$

Theorem

Suppose $\frac{f(x)}{g(x)}$ is a rational function such that the degree of $f(x)$ is smaller than the degree of $g(x)$ and $g(x)$ has only simple real roots, i.e.,

$$
g(x)=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right)
$$

for distinct real numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ and $a \neq 0$. Then

$$
\frac{f(x)}{g(x)}=\frac{f\left(\alpha_{1}\right)}{g^{\prime}\left(\alpha_{1}\right)\left(x-\alpha_{1}\right)}+\frac{f\left(\alpha_{2}\right)}{g^{\prime}\left(\alpha_{2}\right)\left(x-\alpha_{2}\right)}+\cdots+\frac{f\left(\alpha_{k}\right)}{g^{\prime}\left(\alpha_{k}\right)\left(x-\alpha_{k}\right)}
$$

Proof

First, observe that

$$
g^{\prime}(x)=\sum_{j=1}^{k} a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(\widehat{x-\alpha_{j}}\right) \cdots\left(x-\alpha_{k}\right)
$$

where $\left(\widehat{x-\alpha_{i}}\right)$ means the factor $x-\alpha_{i}$ is omitted. Thus we have

$$
\begin{aligned}
g^{\prime}\left(\alpha_{i}\right) & =\sum_{j=1}^{k} a\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{j}}\right) \cdots\left(\alpha_{i}-\alpha_{k}\right) \\
& =a\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{i}}\right) \cdots\left(\alpha_{i}-\alpha_{k}\right)
\end{aligned}
$$

Since $g(x)$ has distinct real zeros, the partial fraction decomposition takes the form

$$
\frac{f(x)}{g(x)}=\frac{A_{1}}{x-\alpha_{1}}+\frac{A_{2}}{x-\alpha_{2}}+\cdots+\frac{A_{k}}{x-\alpha_{k}}
$$

Proof.

Multiplying both sides by $g(x)=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right)$, we get

$$
f(x)=\sum_{i=1}^{k} A_{i} a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(\widehat{x-\alpha_{i}}\right) \cdots\left(x-\alpha_{k}\right)
$$

For $i=1,2, \cdots, k$, substituting $x=\alpha_{i}$, we obtain

$$
\begin{aligned}
f\left(\alpha_{i}\right) & =\sum_{j=1}^{k} A_{j} a\left(\alpha_{j}-\alpha_{1}\right)\left(\alpha_{j}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{j}-\alpha_{i}}\right) \cdots\left(\alpha_{j}-\alpha_{k}\right) \\
& =A_{i} a\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{i}}\right) \cdots\left(\alpha_{i}-\alpha_{k}\right) \\
& =A_{i} g^{\prime}\left(\alpha_{i}\right)
\end{aligned}
$$

and the result follows.

Example

Evaluate the following integrals.
(1) $\int \frac{x^{5}+2 x-1}{x^{3}-x} d x$
(2) $\int \frac{9 x-2}{2 x^{3}+3 x^{2}-2 x} d x$
(3) $\int \frac{x^{2}-2}{x(x-1)^{2}} d x$
(4) $\int \frac{x^{2}}{x^{4}-1} d x$
(5) $\int \frac{8 x^{2}}{x^{4}+4} d x$
(6) $\int \frac{2 x+1}{x^{4}+2 x^{2}+1} d x$

Solution

1. By division and factorization $x^{3}-x=x(x-1)(x+1)$, we obtain the partial fraction decomposition

$$
\frac{x^{5}+4 x-3}{x^{3}-x}=x^{2}+1+\frac{5 x-3}{x^{3}-x}=x^{2}+1+\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} .
$$

Multiply both sides by $x(x-1)(x+1)$ and obtain

$$
\begin{aligned}
& 5 x-3=A(x-1)(x+1)+B x(x+1)+C x(x-1) \\
\Rightarrow \quad & A=3, B=1, C=-4
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{x^{5}+4 x-3}{x^{3}-x} d x & =\int\left(x^{2}+1+\frac{3}{x}+\frac{1}{x-1}-\frac{4}{x+1}\right) d x \\
& =\frac{x^{3}}{3}+x+3 \ln |x|+\ln |x-1|-4 \ln |x+1|+C
\end{aligned}
$$

Solution

2. By factorization $2 x^{3}+3 x^{2}-2 x=x(x+2)(2 x-1)$, we obtain the partial fraction decomposition

$$
\frac{9 x-2}{2 x^{3}+3 x^{2}-2 x}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{2 x-1} .
$$

Multiply both sides by $x(x+2)(2 x-1)$ and obtain

$$
\begin{aligned}
& 9 x-2=A(x+2)(2 x-1)+B x(2 x-1)+C x(x+2) \\
\Rightarrow \quad & A=1, B=-2, C=2 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \int \frac{9 x-2}{2 x^{3}+3 x^{2}-2 x} d x \\
= & \int\left(\frac{1}{x}-\frac{2}{x+2}+\frac{2}{2 x-1}\right) d x \\
= & \ln |x|-2 \ln |x+2|+\ln |2 x-1|+C .
\end{aligned}
$$

Solution

3. The partial fraction decomposition is

$$
\frac{x^{2}-2}{x(x-1)^{2}}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1}+\frac{C}{x}
$$

Multiply both sides by $x(x-1)^{2}$ and obtain

$$
\begin{aligned}
& x^{2}-2=A x+B x(x-1)+C(x-1)^{2} \\
\Rightarrow \quad & A=-1, B=3, C=-2
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{x^{2}-2}{x(x-1)^{2}} d x & =\int\left(-\frac{1}{(x-1)^{2}}+\frac{3}{x-1}-\frac{2}{x}\right) d x \\
& =\frac{1}{x-1}+3 \ln |x-1|-2 \ln |x|+C
\end{aligned}
$$

Solution

4. The partial fraction decomposition is

$$
\begin{aligned}
\frac{x^{2}}{x^{4}-1} & =\frac{x^{2}}{\left(x^{2}-1\right)\left(x^{2}+1\right)} \\
& =\frac{1}{2}\left(\frac{1}{x^{2}-1}+\frac{1}{x^{2}+1}\right) \\
& =\frac{1}{2(x-1)(x+1)}+\frac{1}{2\left(x^{2}+1\right)} \\
& =\frac{1}{4(x-1)}-\frac{1}{4(x+1)}+\frac{1}{2\left(x^{2}+1\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int \frac{x^{2} d x}{x^{4}-1} & =\int\left(\frac{1}{4(x-1)}-\frac{1}{4(x+1)}+\frac{1}{2\left(x^{2}+1\right)}\right) d x \\
& =\frac{1}{4} \ln |x-1|-\frac{1}{4} \ln |x+1|+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

Solution

5. By factorization $x^{4}+4=\left(x^{2}+2\right)^{2}-(2 x)^{2}=\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right)$,

$$
\begin{aligned}
& \int \frac{8 x^{2}}{x^{4}+4} d x \\
= & \int \frac{8 x^{2} d x}{\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right)} d x \\
= & \int 2 x\left(\frac{4 x}{\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right)}\right) d x \\
= & \int 2 x\left(\frac{1}{x^{2}-2 x+2}-\frac{1}{x^{2}+2 x+2}\right) d x \\
= & \int\left(\frac{2 x}{(x-1)^{2}+1}-\frac{2 x}{(x+1)^{2}+1}\right) d x \\
= & \int\left(\frac{2(x-1)}{(x-1)^{2}+1}+\frac{2}{(x-1)^{2}+1}-\frac{2(x+1)}{(x+1)^{2}+1}+\frac{2}{(x+1)^{2}+1}\right) d x \\
= & \ln \left(x^{2}-2 x+2\right)+2 \tan ^{-1}(x-1)-\ln \left(x^{2}+2 x+2\right)+2 \tan ^{-1}(x+1)+C
\end{aligned}
$$

Solution

6.

$$
\begin{aligned}
& \int \frac{2 x+1}{x^{4}+2 x^{2}+1} d x \\
= & \int \frac{2 x d x}{\left(x^{2}+1\right)^{2}}+\int \frac{d x}{\left(x^{2}+1\right)^{2}} \\
= & \int \frac{d\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}+\int \frac{x^{2}+1}{\left(x^{2}+1\right)^{2}} d x-\int \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}} \\
= & -\frac{1}{x^{2}+1}+\int \frac{d x}{x^{2}+1}-\frac{1}{2} \int \frac{x d\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} \\
= & -\frac{1}{x^{2}+1}+\tan ^{-1} x+\frac{1}{2} \int x d\left(\frac{1}{x^{2}+1}\right) \\
= & -\frac{1}{x^{2}+1}+\tan ^{-1} x+\frac{1}{2}\left(\frac{x}{x^{2}+1}\right)-\frac{1}{2} \int \frac{d x}{x^{2}+1} \\
= & \frac{x-2}{2\left(x^{2}+1\right)}+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

Example

Find the partial fraction decomposition of the following functions.
(1) $\frac{5 x-3}{x^{3}-x}$
(2) $\frac{9 x-2}{2 x^{3}+3 x^{2}-2 x}$

Solution

(1) For $g(x)=x^{3}-x=x(x-1)(x+1), g^{\prime}(x)=3 x^{2}-1$. Therefore

$$
\begin{aligned}
\frac{5 x-3}{x^{3}-x} & =\frac{-3}{g^{\prime}(0) x}+\frac{5(1)-3}{g^{\prime}(1)(x-1)}+\frac{5(-1)-3}{g^{\prime}(-1)(x+1)} \\
& =\frac{3}{x}+\frac{1}{x-1}-\frac{4}{x+1}
\end{aligned}
$$

(2) For $g(x)=2 x^{3}+3 x^{2}-2 x=x(x+2)(2 x-1), g^{\prime}(x)=6 x^{2}+6 x-2$. Therefore

$$
\begin{aligned}
& \frac{9 x-2}{2 x^{3}+3 x^{2}-2 x} \\
= & \frac{-2}{g^{\prime}(0) x}+\frac{9(-2)-2}{g^{\prime}(-2)(x+2)}+\frac{9\left(\frac{1}{2}\right)-2}{g^{\prime}\left(\frac{1}{2}\right)(2 x-1)} \\
= & \frac{1}{x}-\frac{2}{x+2}+\frac{2}{2 x-1}
\end{aligned}
$$

t-substitution

Techniques

To evaluate

$$
\int R(\cos x, \sin x, \tan x) d x
$$

where R is a rational function, we may use t-substitution

$$
t=\tan \frac{x}{2}
$$

Then

$$
\begin{gathered}
\tan x=\frac{2 t}{1-t^{2}} ; \cos x=\frac{1-t^{2}}{1+t^{2}} ; \sin x=\frac{2 t}{1+t^{2}} \\
d x=d\left(2 \tan ^{-1} t\right)=\frac{2 d t}{1+t^{2}}
\end{gathered}
$$

We have

$$
\int R(\cos x, \sin x, \tan x) d x=\int R\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}, \frac{2 t}{1-t^{2}}\right) \frac{2 d t}{1+t^{2}}
$$

which is an integral of rational function.

Example

Use t-substitution to evaluate the following integrals.
(1) $\int \frac{d x}{1+\cos x}$
(2) $\int \frac{\sin x d x}{\cos x+\sin x}$
(3) $\int \frac{d x}{1+\cos x+\sin x}$

Solution

1. Let $t=\tan \frac{x}{2}, \cos x=\frac{1-t^{2}}{1+t^{2}}, d x=\frac{2 d t}{1+t^{2}}$. We have

$$
\begin{aligned}
\int \frac{d x}{1+\cos x} & =\int\left(\frac{1}{1+\frac{1-t^{2}}{1+t^{2}}}\right) \frac{2 d t}{1+t^{2}}=\int d t=t+C=\tan \frac{x}{2}+C \\
& =\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}+C=\frac{2 \cos \frac{x}{2} \sin \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}+C=\frac{\sin x}{1+\cos x}+C
\end{aligned}
$$

Alternatively

$$
\begin{aligned}
\int \frac{d x}{1+\cos x} & =\int \frac{d x}{2 \cos ^{2} \frac{x}{2}}=\frac{1}{2} \int \sec ^{2} \frac{x}{2} d x \\
& =\tan \frac{x}{2}+C=\frac{\sin x}{1+\cos x}+C
\end{aligned}
$$

Solution

2. Let $t=\tan \frac{x}{2}, \cos x=\frac{1-t^{2}}{1+t^{2}}, \sin x=\frac{2 t}{1+t^{2}}, d x=\frac{2 d t}{1+t^{2}}$. We have

$$
\begin{aligned}
\int \frac{\sin x d x}{\cos x+\sin x} & =\int \frac{\frac{2 t}{1+t^{2}}}{\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \frac{2 d t}{1+t^{2}} \\
& =\int\left(\frac{1}{1+t^{2}}+\frac{t}{1+t^{2}}+\frac{t-1}{1+2 t-t^{2}}\right) d t \\
& =\tan ^{-1} t+\frac{1}{2} \ln \left|1+t^{2}\right|-\frac{1}{2} \ln \left|1+2 t-t^{2}\right|+C \\
& =\tan ^{-1} t-\frac{1}{2} \ln \left|\frac{1+2 t-t^{2}}{1+t^{2}}\right|+C \\
& =\tan ^{-1} t-\frac{1}{2} \ln \left|\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}\right|+C \\
& =\frac{x}{2}-\frac{1}{2} \ln |\cos x+\sin x|+C
\end{aligned}
$$

Solution

Alternatively

$$
\begin{aligned}
\int \frac{\sin x d x}{\cos x+\sin x} & =\frac{1}{2} \int\left(1-\frac{\cos x-\sin x}{\cos x+\sin x}\right) d x \\
& =\frac{x}{2}-\frac{1}{2} \int \frac{d(\sin x+\cos x)}{\cos x+\sin x} \\
& =\frac{x}{2}-\frac{1}{2} \ln |\cos x+\sin x|+C
\end{aligned}
$$

Solution

3. Let $t=\tan \frac{x}{2}, \cos x=\frac{1-t^{2}}{1+t^{2}}, \sin x=\frac{2 t}{1+t^{2}}, d x=\frac{2 d t}{1+t^{2}}$. We have

$$
\begin{aligned}
\int \frac{d x}{1+\cos x+\sin x} & =\int \frac{\frac{2 d t}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \\
& =\int \frac{d t}{1+t} \\
& =\ln |1+t|+C \\
& =\ln \left|1+\tan \frac{x}{2}\right|+C \\
& =\ln \left|1+\frac{\sin x}{1+\cos x}\right|+C \\
& =\ln \left|\frac{1+\cos x+\sin x}{1+\cos x}\right|+C
\end{aligned}
$$

