Limits of sequences

Definition 1 (Bounded sequence). We say that a sequence a_{n} is bounded if there exists real number M such that $\left|a_{n}\right| \leq M$ for any natural number $n \in \mathbb{N}$.

Definition 2 (Convergent sequence). We say that a sequence a_{n} is convergent if there exists real number L such that for any $\varepsilon>0$, there exists natural number $N \in \mathbb{N}$ such that if $n>N$, then

$$
\left|a_{n}-L\right|<\varepsilon .
$$

In this case we say that the limit of a_{n} is L and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Theorem 3. If a_{n} is convergent, then a_{n} is bounded.
Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=L$. Then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<1$ which implies $\left|a_{n}\right| \leq|L|+1$. Take

$$
M=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n}\right|,|L|+1\right\}
$$

Then we have $\left|a_{n}\right| \leq M$ for any $n \in \mathbb{N}$.
Theorem 4. Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$. Then $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.
Proof. Since a_{n} and b_{n} are convergent, they are bounded and there exists real numbers $M_{1}, M_{2}>0$ such that $\left|a_{n}\right| \leq M_{1}$ and $\left|b_{n}\right| \leq M_{2}$ for any $n \in \mathbb{N}$. Note that we have $|a| \leq M_{1}$ and $|b| \leq M_{2}$. Now for any $\varepsilon>0$, there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, we have

$$
\left|a_{n}-a\right|<\frac{\varepsilon}{2 M_{2}}
$$

and there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$, we have

$$
\left|b_{n}-b\right|<\frac{\varepsilon}{2 M_{1}}
$$

Now take $N=\max \left\{N_{1}, N_{2}\right\}$. Then if $n>N$, we have

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right| \\
& \leq\left|\left(a_{n}-a\right) b_{n}\right|+\left|a\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|\left|b_{n}\right|+|a|\left|b_{n}-b\right| \\
& <\left(\frac{\varepsilon}{2 M_{2}}\right) M_{2}+M_{1}\left(\frac{\varepsilon}{2 M_{1}}\right) \\
& =\varepsilon .
\end{aligned}
$$

Therefore we conclude that $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.
Theorem 5. If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.
Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=0$. For any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-0\right|<\varepsilon$. Now if $n>N$, we have $\left|\left|a_{n}\right|-0\right|=\left|a_{n}\right|=$ $\left|a_{n}-0\right|<\varepsilon$. Therefore we conclude that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.

Theorem 6. If $a_{n} \geq 0$ for any n and $\lim _{n \rightarrow \infty} a_{n}=a$, then $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.
Proof. Suppose $a=0$. Then for any $\varepsilon>0$, there exists $n \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}\right|<\varepsilon^{2}$. Now if $n>N$, we have $\left|\sqrt{a_{n}}\right|=\sqrt{a_{n}}<\varepsilon$. Therefore we conclude that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=0$.

Suppose $a>0$. For any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-a\right|<\varepsilon \sqrt{a}$. It follows that if $n>N$, then

$$
\begin{aligned}
\left|\sqrt{a_{n}}-\sqrt{a}\right| & =\frac{\left|\sqrt{a_{n}}-\sqrt{a}\right|\left|\sqrt{a_{n}}+\sqrt{a}\right|}{\left|\sqrt{a_{n}}+\sqrt{a}\right|} \\
& =\frac{\left|a_{n}-a\right|}{\left|\sqrt{a_{n}}+\sqrt{a}\right|} \\
& <\frac{\varepsilon \sqrt{a}}{\sqrt{a}} \\
& =\varepsilon .
\end{aligned}
$$

We conclude that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.

