Limits of sequences

Definition 1 (Bounded sequence). We say that a sequence a_n is bounded if there exists real number M such that $|a_n| \leq M$ for any natural number $n \in \mathbb{N}$.

Definition 2 (Convergent sequence). We say that a sequence a_n is convergent if there exists real number L such that for any $\varepsilon > 0$, there exists natural number $N \in \mathbb{N}$ such that if n > N, then

$$|a_n - L| < \varepsilon.$$

In this case we say that the limit of a_n is L and write

$$\lim_{n \to \infty} a_n = L$$

Theorem 3. If a_n is convergent, then a_n is bounded.

Proof. Suppose $\lim_{n\to\infty} a_n = L$. Then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < 1$ which implies $|a_n| \le |L| + 1$. Take

$$M = \max\{|a_0|, |a_1|, |a_2|, \cdots, |a_n|, |L|+1\}.$$

Then we have $|a_n| \leq M$ for any $n \in \mathbb{N}$.

Theorem 4. Suppose $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Then $\lim_{n \to \infty} a_n b_n = ab$.

Proof. Since a_n and b_n are convergent, they are bounded and there exists real numbers $M_1, M_2 > 0$ such that $|a_n| \leq M_1$ and $|b_n| \leq M_2$ for any $n \in \mathbb{N}$. Note that we have $|a| \leq M_1$ and $|b| \leq M_2$. Now for any $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$, we have

$$|a_n - a| < \frac{\varepsilon}{2M_2}$$

and there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$, we have

$$|b_n - b| < \frac{\varepsilon}{2M_1}$$

Now take $N = \max\{N_1, N_2\}$. Then if n > N, we have

$$\begin{aligned} |a_n b_n - ab| &= |a_n b_n - ab_n + ab_n - ab| \\ &\leq |(a_n - a)b_n| + |a(b_n - b)| \\ &\leq |a_n - a||b_n| + |a||b_n - b| \\ &< \left(\frac{\varepsilon}{2M_2}\right) M_2 + M_1\left(\frac{\varepsilon}{2M_1}\right) \\ &= \varepsilon. \end{aligned}$$

Therefore we conclude that $\lim_{n \to \infty} a_n b_n = ab$.

Theorem 5. If $\lim_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} |a_n| = 0$.

Proof. Suppose $\lim_{n \to \infty} a_n = 0$. For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - 0| < \varepsilon$. Now if n > N, we have $||a_n| - 0| = |a_n| = 0$. $|a_n - 0| < \varepsilon$. Therefore we conclude that $\lim_{n \to \infty} |a_n| = 0$.

Theorem 6. If $a_n \ge 0$ for any n and $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.

Proof. Suppose a = 0. Then for any $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that if n > N, then $|a_n| < \varepsilon^2$. Now if n > N, we have $|\sqrt{a_n}| = \sqrt{a_n} < \varepsilon$. Therefore we conclude that $\lim_{n\to\infty} \sqrt{a_n} = 0$. Suppose a > 0. For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if n > N,

then $|a_n - a| < \varepsilon \sqrt{a}$. It follows that if n > N, then

$$\begin{aligned} |\sqrt{a_n} - \sqrt{a}| &= \frac{|\sqrt{a_n} - \sqrt{a}||\sqrt{a_n} + \sqrt{a}|}{|\sqrt{a_n} + \sqrt{a}|} \\ &= \frac{|a_n - a|}{|\sqrt{a_n} + \sqrt{a}|} \\ &< \frac{\varepsilon \sqrt{a}}{\sqrt{a}} \\ &= \varepsilon. \end{aligned}$$

We conclude that $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

I 1		
_	-	