THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 2018 Spring MATH2230
 Homework Set 7 (Due on Mar. 12)

All the homework problems are taken from Complex Variables and Applications, Ninth Edition, by James Ward Brown/Ruel V. Churchill.

P159-161
2. Let C_{1} demote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1, y= \pm 1$ and let C_{2} be the positively oriented circle $|z|=4$. With the aid of the corollary in Sec. 53. point out why

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$
(b) $f(z)=\frac{z+2}{\sin (z / 2)}$
(c) $f(z)=\frac{z}{1-e^{z}}$.

3 . If C_{0} denotes a positively oriented circle $\left|z-z_{0}\right|=R$, then

$$
\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2 \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

according to Exercise 13. Sec. 46.. Use that result and the corollary in Sec. 53 to show that if C is the boundary of the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$ described in the positive sense, then

$$
\int_{C}(z-2-i)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2 \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

4. Use the following method to derive the integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x d x=\frac{\sqrt{\pi}}{2} e^{-b^{2}} \quad(b>0)
$$

(a) Show that the sum of the integrals of $e^{-z^{2}}$ along the lower and upper horizontal legs of the rectangular path in figure can be written

$$
2 \int_{0}^{a} e^{-x^{2}} d x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x d x
$$

and that the sum of the integrals along the vertical legs on the right and left can be written

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{-i 2 a y} d y-i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{i 2 a y} d y
$$

Thus, with the aid of the Cauchy-Goursat theorem. show that

$$
\int_{0}^{a} e^{-x^{2}} \cos 2 b x d x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} d x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y d y
$$

(b) By accepting the fact that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

and observing that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y d y\right| \leq \int_{0}^{b} e^{y^{2}} d y
$$

obtain the desired integration formula by letting $l l$ tend to infinity in the equation at the end of part (a).
5. According to Exercise 6. Sec. 43. the path C_{1} from the origin to the point $z=1$ along the graph of the function defined by means of the equations

$$
y(x)= \begin{cases}x^{3} \sin (\pi / x) & \text { when } 0<x \leq 1 \\ 0 & \text { when } x=0\end{cases}
$$

is a smooth arc that intersects the real axis an infinite number of times. Let C_{2} denote the line segment along the real axis from $z=1$ back to the origin, and let C_{3} denote any smooth arc from the origin to $z=1$ that does not intersect itself and has only its end points in common with the arcs C_{1} and C_{2}. Apply the Cauchy-Goursat theorem to show that if a function f is entire, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{3}} f(z) d z \quad \text { and } \quad \int_{C_{2}} f(z) d z=-\int_{C_{3}} f(z) d z
$$

Conclude that even though the dosed contour $C=C_{1}+C_{2}$ intersects itself an infinite number of times,

$$
\int_{C} f(z) d z=0
$$

6 . Let C denote the positively oriented boundary of the half disk $0 \leq r \leq 1,0 \leq \theta \leq \pi$, and let $f(z)$ be a continuous function defined on that half disk by writing $f(0)=0$ and using the branch

$$
f(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0,-\pi / 2<\theta<3 \pi / 2)
$$

of the multiple-valued function $z^{1 / 2}$. Show that

$$
\int_{C} f(z) d z=0
$$

P170

1. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$;
(b) $\int_{C} \frac{\cos z d z}{z\left(z^{2}+8\right)}$;
(c) $\int_{C} \frac{z d z}{2 z+1}$;
(d) $\int_{C} \frac{\cosh z d z}{z^{4}}$;
(e) $\int_{C} \frac{\tan (z / 2) d z}{\left(z-x_{0}\right)^{2}} \quad\left(-2<x_{0}<2\right)$.
2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when

$$
\text { (a) } g(z)=\frac{1}{z^{2}+4} ; \quad \text { (b) } \quad g(z)=\frac{1}{\left(z^{2}+4\right)^{2}} \text {. }
$$

3. Let C be the circle $|z|=3$ described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} d s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
4 . Let C be any simple closed contour described in the positive sense in the z plane and write

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} d s
$$

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside.
P172
10. Let f be an entire function such that $|f(z)| \leq A|z|$ for all z where A is a fixed positive number. Show that $f(z)=a_{1} z$ where a_{1} is a complex constant.
Suggestion: Use Cauchy's inequality (Sec. 57) to show that the second derivative $f^{\prime \prime}(z)$ is zero everywhere in the plane. Note that the constant M_{R} in Cauchy's inequality is less than or equal to $A\left(\left|z_{0}\right|+R\right)$.

P177-178

4. Let R region $0 \leq x \leq \pi, 0 \leq y \leq 1$. Show that the modulus of the entire function $f(z)=\sin z$ has a maximum value in R at the boundary point $z=(\pi / 2)+i$.
Suggestion: Write $|f(z)|^{2}=\sin ^{2} x+\sinh ^{2} y$ (see Sec. 37) and locate points in R at which $\sin ^{2} x$ and $\sinh ^{2} y$ are the largest.

6 . Let f be the function $f(z)=e^{z}$ and R the rectangular region $0 \leq x \leq 1,0 \leq y \leq \pi$. Illustrate results in Sec. 59 and Exercise 5 by finding points in R where the component function $u(x, y)=\operatorname{Re}|f(z)|$ reaches its maximum and minimum value.
(Sec. 59 and Exercise 5 (no need to do, just for reference): Let $f=u+i v$ be a function that is continuous on a closed bounded region R and analytic and not constant throughout the interior of R. Prove that the component function u has a minimum value in R which occurs on the boundary of R and never in the interior.)

