# THE CHINESE UNIVERSITY OF HONG KONG <br> Department of Mathematics <br> 2018 Spring MATH2230 <br> Tutorial 8 

Theorem 1. (Taylor Series) Suppose that $f$ is analytic in a disk $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<R\right\}\right.$. Then $f$ has the power series representation centred at $z=z_{0}$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \quad \text { for all } z \in\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<R\right\}\right.
$$

Remark: The Taylor series of $f$ centred at a given point is unique. ( $a_{n}$ is unique)
Remark: This means that the infinite series converges for any $z$ in the disk. (may not uniform!)
Remark : If $f$ is analytic at some point $z_{0}$, then it must be analytic in some small disk $\{z \in \mathbb{C} \mid$ $\left.\left|z-z_{0}\right|<\varepsilon\right\}$ such that we have a convergent Taylor series there.
Remark: If $f$ is entire, then the Taylor series converges in the domain $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|<\infty\right\}\right.$ for any $z_{0}$.

Suppose we have a function $f$ which admits a singularity at $z=z_{0}$ such that $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$. It is clear that we do not have a Taylor Series for $f$ since $a_{0}=f\left(z_{0}\right)$ is not defined! $\left(a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}\right.$ may not be defined as well!)

Theorem 2. (Laurent Series) Suppose that $f$ is analytic in an annulus $\left\{z \in \mathbb{C}\left|R_{1}<\left|z-z_{0}\right|<R_{2}\right\}\right.$. Then $f$ has the power series representation centred at $z=z_{0}$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \quad \text { for all } z \in\left\{z \in \mathbb{C}\left|\quad R_{1}<\left|z-z_{0}\right|<R_{2}\right\} .\right.
$$

where $a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1, \ldots)$ and $b_{n}=\frac{1}{2 \pi i} \int_{C} f(z)\left(z-z_{0}\right)^{n-1} d z(n=1,2, \ldots) . C$ is any closed contour in the annulus.

Remark: The formula for $a_{n}$ and $b_{n}$ here may be difficult to compute.
An important technique to compute the whole Laurent series is the following proposition :
Proposition 1. (Geometric Sum) If $|z|<1$, then $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$.
Example 1. Find the Laurent series of $f=\frac{1}{z^{2}+4}$ centred at $z=2 i$ in the region $\{4<|z-2 i|\}$
First, we observe that $\frac{1}{z^{2}+4}=\left(\frac{1}{z-2 i}\right)\left(\frac{1}{z+2 i}\right)$. We shall be careful that $z=2 i$ is a singularity of $f$ so it makes sense to consider the Laurent series of $f$. If we can find the Laurent series for $\frac{1}{z+2 i}$,
then it is done since $\frac{1}{z-2 i}$ is already 'good'.
Second we find the Laurent series for $\frac{1}{z+2 i}$ by proposition 1 . We observe that

$$
\frac{1}{z+2 i}=\frac{1}{z-2 i+4 i}=\frac{1}{z-2 i} \frac{1}{\left(1-\left(-\frac{4 i}{z-2 i}\right)\right)}
$$

Since $4<|z-2 i| \Rightarrow\left|\frac{4 i}{z-2 i}\right|<1$. By proposition 1,

$$
\frac{1}{\left(1-\left(-\frac{4 i}{z-2 i}\right)\right)}=\sum_{n=0}^{\infty}\left(-\frac{4 i}{z-2 i}\right)^{n}
$$

Therefore,

$$
f=\frac{1}{z^{2}+4}=\left(\frac{1}{z-2 i}\right)\left(\frac{1}{z+2 i}\right)=\sum_{n=0}^{\infty} \frac{(-4 i)^{n}}{(z-2 i)^{n+2}}
$$

Example 2. Try to find a Laurent series of example 1 in the region $\{0<|z-2 i|<4\}$.
Example 3. Find the Laurent series of $\frac{1}{z \sin z}$ in the region $\left\{0<|z|<\frac{\pi}{2}\right\}$.
Method of long division : We see that $\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\ldots$, by long division, we have

$$
\frac{1}{\sin z}=\frac{1}{z}+\frac{z}{6}+\frac{7 z^{3}}{360}+\ldots
$$

The disadvantage is that we can not obtain the whole series. However, in this case, we do not have a closed form of Laurent series for $\frac{1}{\sin z}$.

Exercise:

1. Let $R$ be the region $0 \leq x \leq \pi, 0 \leq y \leq 1$. Find the location in the region such that $\cos z$ takes its maximum modulus value in the square.
2. Find the Laurent series of $\frac{1}{z\left(1+z^{2}\right)}$ in the region $\{0<|z|<1\}$ and $\{1<|z|\}$ respectively.
3. Find the Laurent series of $\frac{z}{(z-1)(z-3)}$ in the region $\{0<|z-1|<2\}$.
