THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018 Spring MATH2230 Tutorial 6

Theorem 1. Suppose that

- 1. C is simply closed contour in counterclockwise direction;
- 2. $C_k(n=1,..,n)$ are simply closed contour interior to C, all in clockwise direction, that are disjoint and whose interiors have no common points.

If f is analytic on all of the contour C and C_k and throughout the multiply connected domain consisting of the points inside C and exterior to each C_k , then

$$\int_C f dz + \sum_1^n \int_{C_k} f dz = 0$$

Remark : You should draw a diagram about it.

Remark : $\int_C f dz = - \int_{-C} f dz$ where C is in counterclockwise direction and -C is in clockwise direction.

Remark : You can replace the contour C with a circle or other "simple" contour in most of the case.

Theorem 2. (Weak Cauchy-Goursat theorem) If f(z) is analytic at all points interior to and on a simple closed contour C except a point z_0 interior to C and satisfies $\lim_{z \to z_0} |z - z_0| f(z) = 0$, then

$$\int_C f(z)dz = 0$$

Remark : Such a point z_0 is called the removable singularity of f which will be taught later. Remark : This theorem also holds for finitely many such a singularity.

Theorem 3. (Cauchy Integral Formula) Let f be analytic inside and on a simple closed contour C. If z_0 is interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z - z_0}$$

Remark : You may prove that by using Weak Cauchy-Goursat by setting $g = \frac{f(z) - f(z_0)}{z - z_0}$. By continuity of f we have $\lim_{z \to z_0} |z - z_0| g(z) = 0$.

Remark : You can see that an analytic function is uniquely determined by its boundary value. (compare with the case of real variable function)

Lemma 1. Let h be continuous on a simple closed contour C. Define $H_n(z) = \int_C \frac{h(w)dw}{(w-z)^n}$ for $n \ge 1$ and z being inside the interior of C. Then H_n is analytic inside the interior of C and $H'_n(z) = nH_{n+1}(z)$.

Using this lemma, we have:

Theorem 4. (Generalized Cauchy Integral Formula) Let f be analytic inside and on a simple closed contour C. If z_0 is interior to C, then

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)dz}{(z-z_{0})^{n+1}}$$

Remark : This is why analyticity implies complex infinite differentiability.

Exercise:

Find ∫_C dz/(z²+4) where C represents the circle |z - i| = 2.
Find ∫_C dz/((z - i/2)⁵) where C represents the circle |z - i| = 2.
Find ∫_C dz/((z² + 4)²) where C represents the circle |z - i| = 2.
Find ∫_C cos zdz/((z² + 4)²) where C represents the square whose sides lie along x = ±2 and y = ±2.
Find ∫_C dz/((z + 1)²(z² + 1)) where C represents the circle |z| = 2.
Find ∫_C e^{az}dz/(z + 1)²(z² + 1) where C represents the circle |z| = 2.
Find ∫_C e^{az}dz/(z + 1)²(z² + 1) where C represents the circle |z| = 2.
Find ∫_C e^{az}dz/(z + 1)²(z² + 1) where C represents the circle |z| = 2.