THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 2018 Spring MATH2230
 Tutorial 6

Theorem 1. Suppose that

1. C is simply closed contour in counterclockwise direction;
2. $C_{k}(n=1, . ., n)$ are simply closed contour interior to C, all in clockwise direction, that are disjoint and whose interiors have no common points.

If f is analytic on all of the contour C and C_{k} and throughout the multiply connected domain consisting of the points inside C and exterior to each C_{k}, then

$$
\int_{C} f d z+\sum_{1}^{n} \int_{C_{k}} f d z=0
$$

Remark: You should draw a diagram about it.
Remark : $\int_{C} f d z=-\int_{-C} f d z$ where C is in counterclockwise direction and $-C$ is in clockwise direction.
Remark: You can replace the contour C with a circle or other "simple" contour in most of the case.
Theorem 2. (Weak Cauchy-Goursat theorem) If $f(z)$ is analytic at all points interior to and on a simple closed contour C except a point z_{0} interior to C and satisfies $\lim _{z \rightarrow z_{0}}\left|z-z_{0}\right| f(z)=0$, then

$$
\int_{C} f(z) d z=0
$$

Remark: Such a point z_{0} is called the removable singularity of f which will be taught later.
Remark: This theorem also holds for finitely many such a singularity.
Theorem 3. (Cauchy Integral Formula) Let f be analytic inside and on a simple closed contour C. If z_{0} is interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}
$$

Remark : You may prove that by using Weak Cauchy-Goursat by setting $g=\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$. By continuity of f we have $\lim _{z \rightarrow z_{0}}\left|z-z_{0}\right| g(z)=0$.
Remark : You can see that an analytic function is uniquely determined by its boundary value. (compare with the case of real variable function)
Lemma 1. Let h be continuous on a simple closed contour C. Define $H_{n}(z)=\int_{C} \frac{h(w) d w}{(w-z)^{n}}$ for $n \geq 1$ and z being inside the interior of C. Then H_{n} is analytic inside the interior of C and $H_{n}^{\prime}(z)=n H_{n+1}(z)$.

Using this lemma, we have:

Theorem 4. (Generalized Cauchy Integral Formula) Let f be analytic inside and on a simple closed contour C. If z_{0} is interior to C, then

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

Remark: This is why analyticity implies complex infinite differentiability.
Exercise:

1. Find $\int_{C} \frac{d z}{z^{2}+4}$ where C represents the circle $|z-i|=2$.
2. Find $\int_{C} \frac{d z}{(z-i / 2)^{5}}$ where C represents the circle $|z-i|=2$.
3. Find $\int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where C represents the circle $|z-i|=2$.
4. Find $\int_{C} \frac{\cos z d z}{z\left(z^{2}+8\right)}$ where C represents the square whose sides lie along $x= \pm 2$ and $y= \pm 2$.
5. Find $\int_{C} \frac{d z}{(z+1)^{2}\left(z^{2}+1\right)}$ where C represents the circle $|z|=2$.
6. Find $\int_{C} \frac{e^{a z} d z}{z}=2 \pi i$ where C represents the unit circle. And hence show that

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

