THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 2018 Spring MATH2230
 Tutorial 3

0.1 Logarithmic function

If the logarithmic is the "inverse" of exponential function, we let $z_{0}=r e^{i \theta} \neq 0$ for $-\pi<\theta \leq \pi$ ($\theta=\operatorname{Arg}(z))$ and we expect to have

$$
\log \left(z_{0}\right)=\log \left(r e^{i \theta}\right)=\log (r)+i \theta
$$

However, $z_{0}=e^{i \theta}=e^{i \theta+2 k \pi i}$ for any integers, hence we have

$$
\log \left(z_{0}\right)=\log \left(r e^{i \theta+2 k \pi i}\right)=\log (r)+i \theta+2 k \pi i
$$

It shows that the logarithmic defined in this way is not a function, we see that $\log \left(z_{0}\right)$ represent a set $\log \left(z_{0}\right):=\{\log (r)+i \theta+2 k \pi i \mid k \in \mathbb{Z}\}$ or we will call \log is a multiple-valued function.
Definition 1. The principal value of $\log (z)$ equals to

$$
\log (z)=\log |z|+i \operatorname{Arg}(z)
$$

where $-\pi<\operatorname{Arg}(z) \leq \pi$.
Remark 1 : Since it is reasonable to define the range of the angle of z_{0} in another way, say, $z_{0}=r e^{i \theta} \neq 0$ for $a<\theta \leq 2 \pi+a$ for any real number a. Such a choice of range of the angle of z is called branch. And we can define another single-value function for \log by $\log (r)+i \theta$ with $a<\theta \leq 2 \pi+a$. (The word "principal" in definition 1 means that $a=-\pi$. We would not call the single-value \log to be principal if $a \neq 0$.) And the range $-\pi<\theta \leq \pi$ is called principal branch.

Remark 2: Although $\log (z)$ can be defined on the ray $\theta=a, \log (z)$ is not continuous there (not analytic).

Remark 3: $\log (z)$ is analytic in the domain $r>0$ and $-\pi<\operatorname{Arg}(z)<\pi$ (or other branch).

0.2 Power function

Definition 2. Let $z \neq 0$ and $c \in \mathbb{C}$, the power is defined as

$$
z^{c}=e^{c \log (z)}
$$

Clearly it can be defined for other branch.

0.3 Trigonometric function

$$
\begin{aligned}
\sin z & =\frac{e^{i z}-e^{-i z}}{2 i} & \cos z=\frac{e^{i z}+e^{-i z}}{2} \\
\sinh z & =-i \sin (i z)=\frac{e^{z}-e^{-z}}{2} & \cosh z=\cos (i z)=\frac{e^{z}+e^{-z}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d z} \sin z & =\cos z & \frac{d}{d z} \cos z & =-\sin z \\
\frac{d}{d z} \sinh z & =\cosh z & \frac{d}{d z} \cosh z & =\sinh z
\end{aligned}
$$

0.4 Integraion

Definition 3. Let $w(t)=u(t)+i v(t)$ be a complex function of a real variable t, the definite integral of $w(t)$ over the interval $a \leq t \leq b$ is defined as

$$
\int_{a}^{b} w(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Definition 4. Let $z(t)=x(t)+i y(t):[a, b] \rightarrow \mathbb{C}$ be a continuous complex function of a real variable $t, z(t)$ is a simple curve or Jordan curve if $z(t)$ is one to one (the curve does not intersect itself). It is closed if $z(a)=z(b)$. Such a curve is positive oriented when it is in the counterclockwise direction.

Definition 5. A contour is a piecewise smooth simple curve.
Definition 6. Let f be piecewise continuous on a contour C represented by $z(t):[a, b] \rightarrow \mathbb{C}$. The line integral (contour integral) of f along C is defined to be

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Definition 7.

$$
\int_{C} f(z)|d z|=\int_{a}^{b} f(z(t))\left|z^{\prime}(t)\right| d t
$$

Proposition 1.

$$
\left|\int_{C} f(z) d z\right| \leq \int_{C}|f(z)||d z|
$$

0.5 Exercise

1. Compute the value of $\log (-1+\sqrt{3} i)$ with branch $-\pi<\operatorname{Arg}(z) \leq \pi$
2. Find the domain such that $f(z)=\log (z-i)$ is analytic.
3. Find the values of $(1+i)^{i}$ and the principal value of it.
4. Use the Schwarz reflection principle to show that $\overline{\sin z}=\sin \bar{z}$ and $\overline{\cos z}=\cos \bar{z}$.
5. Compute the integral $\int_{C} f(z) d z$ with
(a) C is the arc of the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$ and $f(z)=\frac{z+2}{z}$
(b) C consists of the arc of the semicircle $z=1+e^{i \theta}(\pi \leq \theta \leq 2 \pi)$ and the line segment $z=x$ with $x \in[0,2] . f(z)=z-1$.
